These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 17280122)

  • 1. Tomography of scale-free networks and shortest path trees.
    Kalisky T; Cohen R; Mokryn O; Dolev D; Shavitt Y; Havlin S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066108. PubMed ID: 17280122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometric fractal growth model for scale-free networks.
    Jung S; Kim S; Kahng B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056101. PubMed ID: 12059641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growing trees in internet news groups and forums.
    Kujawski B; Hołyst J; Rodgers GJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036103. PubMed ID: 17930302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Truncation of power law behavior in "scale-free" network models due to information filtering.
    Mossa S; Barthélémy M; Eugene Stanley H; Nunes Amaral LA
    Phys Rev Lett; 2002 Apr; 88(13):138701. PubMed ID: 11955132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of shells in complex networks.
    Shao J; Buldyrev SV; Braunstein LA; Havlin S; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036105. PubMed ID: 19905178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Socioeconomic networks with long-range interactions.
    Carvalho R; Iori G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016110. PubMed ID: 18764023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Onset of traffic congestion in complex networks.
    Zhao L; Lai YC; Park K; Ye N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026125. PubMed ID: 15783396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of shortest path lengths in a class of node duplication network models.
    Steinbock C; Biham O; Katzav E
    Phys Rev E; 2017 Sep; 96(3-1):032301. PubMed ID: 29347025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anomalous transport in scale-free networks.
    López E; Buldyrev SV; Havlin S; Stanley HE
    Phys Rev Lett; 2005 Jun; 94(24):248701. PubMed ID: 16090584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of aging on network structure.
    Zhu H; Wang X; Zhu JY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056121. PubMed ID: 14682860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pseudofractal scale-free web.
    Dorogovtsev SN; Goltsev AV; Mendes JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066122. PubMed ID: 12188798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exactly solvable scale-free network model.
    Iguchi K; Yamada H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036144. PubMed ID: 15903530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolving networks with distance preferences.
    Jost J; Joy MP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036126. PubMed ID: 12366203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Descents and nodal load in scale-free networks.
    Bareinboim E; Barbosa VC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046111. PubMed ID: 18517694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scale-free networks as preasymptotic regimes of superlinear preferential attachment.
    Krapivsky P; Krioukov D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026114. PubMed ID: 18850904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Connectivity distribution of spatial networks.
    Herrmann C; Barthélemy M; Provero P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026128. PubMed ID: 14525070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geographical networks evolving with an optimal policy.
    Xie YB; Zhou T; Bai WJ; Chen G; Xiao WK; Wang BH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036106. PubMed ID: 17500758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Betweenness centrality of fractal and nonfractal scale-free model networks and tests on real networks.
    Kitsak M; Havlin S; Paul G; Riccaboni M; Pammolli F; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056115. PubMed ID: 17677141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size of quantum networks.
    Bianconi G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056119. PubMed ID: 12786232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Power law of path multiplicity in complex networks.
    Deng Y; Wu J
    PNAS Nexus; 2024 Jun; 3(6):pgae228. PubMed ID: 38894880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.