These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 17280149)
1. Limits of the potential flow approach to the single-mode Rayleigh-Taylor problem. Ramaprabhu P; Dimonte G; Young YN; Calder AC; Fryxell B Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066308. PubMed ID: 17280149 [TBL] [Abstract][Full Text] [Related]
2. Single-mode dynamics of the Rayleigh-Taylor instability at any density ratio. Ramaprabhu P; Dimonte G Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036314. PubMed ID: 15903581 [TBL] [Abstract][Full Text] [Related]
3. Dynamic evolution of Rayleigh-Taylor bubbles from sinusoidal, W-shaped, and random perturbations. Zhou ZR; Zhang YS; Tian BL Phys Rev E; 2018 Mar; 97(3-1):033108. PubMed ID: 29776047 [TBL] [Abstract][Full Text] [Related]
4. Vortex model and simulations for Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036703. PubMed ID: 15089438 [TBL] [Abstract][Full Text] [Related]
5. Evolution of the single-mode Rayleigh-Taylor instability under the influence of time-dependent accelerations. Ramaprabhu P; Karkhanis V; Banerjee R; Varshochi H; Khan M; Lawrie AG Phys Rev E; 2016 Jan; 93(1):013118. PubMed ID: 26871165 [TBL] [Abstract][Full Text] [Related]
6. Late-time quadratic growth in single-mode Rayleigh-Taylor instability. Wei T; Livescu D Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046405. PubMed ID: 23214698 [TBL] [Abstract][Full Text] [Related]
7. Lattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability. Liang H; Li QX; Shi BC; Chai ZH Phys Rev E; 2016 Mar; 93(3):033113. PubMed ID: 27078453 [TBL] [Abstract][Full Text] [Related]
8. Density dependence of a Zufiria-type model for Rayleigh-Taylor bubble fronts. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):045301. PubMed ID: 15600452 [TBL] [Abstract][Full Text] [Related]
9. Nonlinear Rayleigh-Taylor growth in converging geometry. Clark DS; Tabak M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):055302. PubMed ID: 16089591 [TBL] [Abstract][Full Text] [Related]
10. Secondary instability of the spike-bubble structures induced by nonlinear Rayleigh-Taylor instability with a diffuse interface. Han L; Yuan J; Dong M; Fan Z Phys Rev E; 2021 Sep; 104(3-2):035108. PubMed ID: 34654080 [TBL] [Abstract][Full Text] [Related]
11. Simple potential-flow model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for all density ratios. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026301. PubMed ID: 12636794 [TBL] [Abstract][Full Text] [Related]
12. Solution to Rayleigh-Taylor instabilities: Bubbles, spikes, and their scalings. Mikaelian KO Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053009. PubMed ID: 25353882 [TBL] [Abstract][Full Text] [Related]
13. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density. Yu CX; Xue C; Liu J; Hu XY; Liu YY; Ye WH; Wang LF; Wu JF; Fan ZF Phys Rev E; 2018 Jan; 97(1-1):013102. PubMed ID: 29448344 [TBL] [Abstract][Full Text] [Related]
14. Growth rate of Rayleigh-Taylor turbulent mixing layers with the foliation approach. Poujade O; Peybernes M Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016316. PubMed ID: 20365469 [TBL] [Abstract][Full Text] [Related]
15. Rayleigh-Taylor instability with complex acceleration history. Dimonte G; Ramaprabhu P; Andrews M Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046313. PubMed ID: 17995112 [TBL] [Abstract][Full Text] [Related]
16. Acceleration- and deceleration-phase nonlinear Rayleigh-Taylor growth at spherical interfaces. Clark DS; Tabak M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056308. PubMed ID: 16383746 [TBL] [Abstract][Full Text] [Related]
17. Self-gravity driven instabilities at accelerated interfaces. Hueckstaedt RM; Hunter JH; Lovelace RV Ann N Y Acad Sci; 2005 Jun; 1045():246-59. PubMed ID: 15980316 [TBL] [Abstract][Full Text] [Related]
18. A three-dimensional renormalization group bubble merger model for Rayleigh-Taylor mixing. Cheng B; Glimm J; Sharp DH Chaos; 2002 Jun; 12(2):267-274. PubMed ID: 12779554 [TBL] [Abstract][Full Text] [Related]
19. Multiscale character of the nonlinear coherent dynamics in the Rayleigh-Taylor instability. Abarzhi SI; Nishihara K; Rosner R Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036310. PubMed ID: 16605654 [TBL] [Abstract][Full Text] [Related]
20. Dependence of turbulent Rayleigh-Taylor instability on initial perturbations. Dimonte G Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056305. PubMed ID: 15244930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]