These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 17280152)

  • 1. Liquid flow in surface-nanostructured channels studied by molecular dynamics simulation.
    Cao BY; Chen M; Guo ZY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066311. PubMed ID: 17280152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between induced fluid structure and boundary slip in nanoscale polymer films.
    Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051603. PubMed ID: 21230484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular diffusion and slip boundary conditions at smooth surfaces with periodic and random nanoscale textures.
    Priezjev NV
    J Chem Phys; 2011 Nov; 135(20):204704. PubMed ID: 22128949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slip behavior in liquid films on surfaces of patterned wettability: comparison between continuum and molecular dynamics simulations.
    Priezjev NV; Darhuber AA; Troian SM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 1):041608. PubMed ID: 15903683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous electrolytes near hydrophobic surfaces: dynamic effects of ion specificity and hydrodynamic slip.
    Huang DM; Cottin-Bizonne C; Ybert C; Bocquet L
    Langmuir; 2008 Feb; 24(4):1442-50. PubMed ID: 18052395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slip flow in graphene nanochannels.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2011 Oct; 135(14):144701. PubMed ID: 22010725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stick-slip control in nanoscale boundary lubrication by surface wettability.
    Chen W; Foster AS; Alava MJ; Laurson L
    Phys Rev Lett; 2015 Mar; 114(9):095502. PubMed ID: 25793825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boundary slip and wetting properties of interfaces: correlation of the contact angle with the slip length.
    Voronov RS; Papavassiliou DV; Lee LL
    J Chem Phys; 2006 May; 124(20):204701. PubMed ID: 16774358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular theory of hydrodynamic boundary conditions in nanofluidics.
    Kobryn AE; Kovalenko A
    J Chem Phys; 2008 Oct; 129(13):134701. PubMed ID: 19045110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport, phase transitions, and wetting in micro/nanochannels: a phase field/DDFT approach.
    Mickel W; Joly L; Biben T
    J Chem Phys; 2011 Mar; 134(9):094105. PubMed ID: 21384948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls.
    Lee C; Kim CJ
    Langmuir; 2009 Nov; 25(21):12812-8. PubMed ID: 19610627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slip boundary conditions for shear flow of polymer melts past atomically flat surfaces.
    Niavarani A; Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041606. PubMed ID: 18517634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics study of the influence of wall-gas interactions on heat flow in nanochannels.
    Markvoort AJ; Hilbers PA; Nedea SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066702. PubMed ID: 16089906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic wetting at the nanoscale.
    Nakamura Y; Carlson A; Amberg G; Shiomi J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033010. PubMed ID: 24125347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic slip in silicon nanochannels.
    Ramos-Alvarado B; Kumar S; Peterson GP
    Phys Rev E; 2016 Mar; 93(3):033117. PubMed ID: 27078457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of surface charge on the boundary slip of various oleophilic/phobic surfaces immersed in liquids.
    Li Y; Bhushan B
    Soft Matter; 2015 Oct; 11(38):7680-95. PubMed ID: 26303742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids.
    Niavarani A; Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011606. PubMed ID: 20365383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic slip length as a surface property.
    Ramos-Alvarado B; Kumar S; Peterson GP
    Phys Rev E; 2016 Feb; 93(2):023101. PubMed ID: 26986407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale spiral flow in a cylindrical channel.
    Jeon C; Jeong H; Jung Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056324. PubMed ID: 21728664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.