These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 17280160)

  • 1. Superconducting pipes and levitating magnets.
    Levin Y; Rizzato FB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066605. PubMed ID: 17280160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and investigations of the superconducting magnet system for the multipurpose superconducting electron cyclotron resonance ion source.
    Tinschert K; Lang R; Mäder J; Rossbach J; Spädtke P; Komorowski P; Meyer-Reumers M; Krischel D; Fischer B; Ciavola G; Gammino S; Celona L
    Rev Sci Instrum; 2012 Feb; 83(2):02A319. PubMed ID: 22380166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet.
    Hahn S; Kim K; Kim K; Hu X; Painter T; Dixon I; Kim S; Bhattarai KR; Noguchi S; Jaroszynski J; Larbalestier DC
    Nature; 2019 Jun; 570(7762):496-499. PubMed ID: 31189951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superconducting magnets for the RAON electron cyclotron resonance ion source.
    Choi S; Kim Y; Hong IS; Jeon D
    Rev Sci Instrum; 2014 Feb; 85(2):02A906. PubMed ID: 24593485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superconducting magnet performance for 28 GHz electron cyclotron resonance ion source developed at the Korea Basic Science Institute.
    Park JY; Choi S; Lee BS; Yoon JH; Ok JW; Kim BC; Shin CS; Ahn JK; Won MS
    Rev Sci Instrum; 2014 Feb; 85(2):02A928. PubMed ID: 24593507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical computation on magnetothermal air jet in gravitational and nongravitational fields.
    Akamatsu M; Higano M; Ogasawara H
    Ann N Y Acad Sci; 2006 Sep; 1077():613-28. PubMed ID: 17124148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavioral effects on rats of high strength magnetic fields generated by a resistive electromagnet.
    Houpt TA; Pittman DW; Riccardi C; Cassell JA; Lockwood DR; Barranco JM; Kwon B; Smith JC
    Physiol Behav; 2005 Oct; 86(3):379-89. PubMed ID: 16176822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and fabrication of a superconducting magnet for an 18 GHz electron cyclotron resonance ion∕photon source NFRI-ECRIPS.
    You HJ; Jang SW; Jung YH; Lho TH; Lee SJ
    Rev Sci Instrum; 2012 Feb; 83(2):02A326. PubMed ID: 22380173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic field homogeneity perturbations in finite Halbach dipole magnets.
    Turek K; Liszkowski P
    J Magn Reson; 2014 Jan; 238():52-62. PubMed ID: 24316186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A non-axial superconducting magnet design for optimized patient access and minimal SAD for use in a Linac-MR hybrid: proof of concept.
    Yaghoobpour Tari S; Wachowicz K; Gino Fallone B
    Phys Med Biol; 2017 Apr; 62(8):N147-N160. PubMed ID: 28176678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vectorial calibration of superconducting magnets with a quantum magnetic sensor.
    Botsch L; Raatz N; Pezzagna S; Staacke R; John R; Abel B; Esquinazi PD; Meijer J; Diziain S
    Rev Sci Instrum; 2020 Dec; 91(12):125003. PubMed ID: 33379962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nb3Sn superconducting magnets for electron cyclotron resonance ion sources.
    Ferracin P; Caspi S; Felice H; Leitner D; Lyneis CM; Prestemon S; Sabbi GL; Todd DS
    Rev Sci Instrum; 2010 Feb; 81(2):02A309. PubMed ID: 20192330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical field evaluation of healthcare workers when bending towards high-field MRI magnets.
    Wang H; Trakic A; Liu F; Crozier S
    Magn Reson Med; 2008 Feb; 59(2):410-22. PubMed ID: 18228572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The full phase space dynamics of a magnetically levitated electromagnetic vibration harvester.
    Jensen TW; Insinga AR; Ehlers JC; Bjørk R
    Sci Rep; 2021 Aug; 11(1):16607. PubMed ID: 34400665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Sandwich type dental magnetic devices of Nd-Fe-B magnet and permendur].
    Okuno O; Nakano T; Hamanaka H; Kinouchi Y
    Shika Zairyo Kikai; 1989 Jul; 8(4):539-45. PubMed ID: 2491164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear Magnetic Resonance Spectroscopy in Superconducting Magnetic Fields.
    Nelson FA; Weaver HE
    Science; 1964 Oct; 146(3641):223-32. PubMed ID: 17743702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superconducting magnet designs and MRI accessibility: A review.
    Manso Jimeno M; Vaughan JT; Geethanath S
    NMR Biomed; 2023 Mar; ():e4921. PubMed ID: 36914280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manufacturing of a superconducting magnet system for 28 GHz electron cyclotron resonance ion source at KBSI.
    Lee BS; Choi S; Yoon JH; Park JY; Won MS
    Rev Sci Instrum; 2012 Feb; 83(2):02A347. PubMed ID: 22380194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Future prospects for NMR magnets: A perspective.
    Maeda H; Yanagisawa Y
    J Magn Reson; 2019 Sep; 306():80-85. PubMed ID: 31337560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Globally optimal, minimum stored energy, double-doughnut superconducting magnets.
    Tieng QM; Vegh V; Brereton IM
    Magn Reson Med; 2010 Jan; 63(1):262-7. PubMed ID: 19950210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.