These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 17280223)

  • 21. Concurrent phosphorus doping and reduction of graphene oxide.
    Poh HL; Sofer Z; Nováček M; Pumera M
    Chemistry; 2014 Apr; 20(15):4284-91. PubMed ID: 24590694
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiple quantum phases in graphene with enhanced spin-orbit coupling: from the quantum spin Hall regime to the spin Hall effect and a robust metallic state.
    Cresti A; Van Tuan D; Soriano D; Cummings AW; Roche S
    Phys Rev Lett; 2014 Dec; 113(24):246603. PubMed ID: 25541791
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum transport of disordered Weyl semimetals at the nodal point.
    Sbierski B; Pohl G; Bergholtz EJ; Brouwer PW
    Phys Rev Lett; 2014 Jul; 113(2):026602. PubMed ID: 25062216
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chirality effect in disordered graphene ribbon junctions.
    Long W
    J Phys Condens Matter; 2012 May; 24(17):175302. PubMed ID: 22469635
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phonon-induced many-body renormalization of the electronic properties of graphene.
    Tse WK; Das Sarma S
    Phys Rev Lett; 2007 Dec; 99(23):236802. PubMed ID: 18233392
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Critical level statistics for weakly disordered graphene.
    Amanatidis E; Kleftogiannis I; Katsanos DE; Evangelou SN
    J Phys Condens Matter; 2014 Apr; 26(15):155601. PubMed ID: 24675743
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetothermoelectric transport in modulated and unmodulated graphene.
    Nasir R; Sabeeh K
    J Phys Condens Matter; 2011 Sep; 23(37):375301. PubMed ID: 21881170
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Semimetallic-to-metallic transition and mobility enhancement enabled by reversible iodine doping of graphene.
    Wu Z; Han Y; Huang R; Chen X; Guo Y; He Y; Li W; Cai Y; Wang N
    Nanoscale; 2014 Nov; 6(21):13196-202. PubMed ID: 25255329
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonlinear transport near a quantum phase transition in two dimensions.
    Dalidovich D; Phillips P
    Phys Rev Lett; 2004 Jul; 93(2):027004. PubMed ID: 15323944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving electronic transport of zigzag graphene nanoribbons by ordered doping of B or N atoms.
    An Y; Wei X; Yang Z
    Phys Chem Chem Phys; 2012 Dec; 14(45):15802-6. PubMed ID: 23086259
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonlinear current-voltage characteristics and enhanced negative differential conductance in graphene field effect transistors.
    Wang L; Chen X; Hu Y; Yu A; Lu W
    Nanoscale; 2014 Nov; 6(21):12769-79. PubMed ID: 25224726
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On-demand doping of graphene by stamping with a chemically functionalized rubber lens.
    Choi Y; Sun Q; Hwang E; Lee Y; Lee S; Cho JH
    ACS Nano; 2015 Apr; 9(4):4354-61. PubMed ID: 25817481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemical doping of large-area stacked graphene films for use as transparent, conducting electrodes.
    Kasry A; Kuroda MA; Martyna GJ; Tulevski GS; Bol AA
    ACS Nano; 2010 Jul; 4(7):3839-44. PubMed ID: 20695514
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The microscopic nature of localization in the quantum Hall effect.
    Ilani S; Martin J; Teitelbaum E; Smet JH; Mahalu D; Umansky V; Yacoby A
    Nature; 2004 Jan; 427(6972):328-32. PubMed ID: 14737162
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamical conductivity at the dirty superconductor-metal quantum phase transition.
    Del Maestro A; Rosenow B; Hoyos JA; Vojta T
    Phys Rev Lett; 2010 Oct; 105(14):145702. PubMed ID: 21230844
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Charge and spin Hall conductivity in metallic graphene.
    Sinitsyn NA; Hill JE; Min H; Sinova J; MacDonald AH
    Phys Rev Lett; 2006 Sep; 97(10):106804. PubMed ID: 17025844
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electronic transport in graphitic nanoribbon films.
    Behnam A; Johnson JL; An Y; Biswas A; Ural A
    ACS Nano; 2011 Mar; 5(3):1617-22. PubMed ID: 21341738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Substrate-induced solvent intercalation for stable graphene doping.
    Kim HH; Yang JW; Jo SB; Kang B; Lee SK; Bong H; Lee G; Kim KS; Cho K
    ACS Nano; 2013 Feb; 7(2):1155-62. PubMed ID: 23368414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conductance of partially disordered graphene: crossover from temperature-dependent to field-dependent variable-range hopping.
    Cheah CY; Gómez-Navarro C; Jaurigue LC; Kaiser AB
    J Phys Condens Matter; 2013 Nov; 25(46):465303. PubMed ID: 24140990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.