These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Preparing entangled states between two NV centers via the damping of nanomechanical resonators. Li XX; Li PB; Ma SL; Li FL Sci Rep; 2017 Oct; 7(1):14116. PubMed ID: 29074851 [TBL] [Abstract][Full Text] [Related]
6. Quantum Characteristics of a Nanomechanical Resonator Coupled to a Superconducting LC Resonator in Quantum Computing Systems. Choi JR; Ju S Nanomaterials (Basel); 2018 Dec; 9(1):. PubMed ID: 30586906 [TBL] [Abstract][Full Text] [Related]
7. Nanomechanical measurements of a superconducting qubit. LaHaye MD; Suh J; Echternach PM; Schwab KC; Roukes ML Nature; 2009 Jun; 459(7249):960-4. PubMed ID: 19536259 [TBL] [Abstract][Full Text] [Related]
9. Detection of qubit-oscillator entanglement in nanoelectromechanical systems. Schmidt TL; Børkje K; Bruder C; Trauzettel B Phys Rev Lett; 2010 Apr; 104(17):177205. PubMed ID: 20482137 [TBL] [Abstract][Full Text] [Related]
10. The Rayleigh-Lorentz invariant for superconducting resonators and optimal adiabatic qubit-information detection. Choi JR Sci Rep; 2021 Jul; 11(1):13722. PubMed ID: 34215762 [TBL] [Abstract][Full Text] [Related]
11. Nonlinear coupling of nanomechanical resonators to josephson quantum circuits. Zhou X; Mizel A Phys Rev Lett; 2006 Dec; 97(26):267201. PubMed ID: 17280458 [TBL] [Abstract][Full Text] [Related]
12. Ground state cooling of a nanomechanical resonator in the nonresolved regime via quantum interference. Xia K; Evers J Phys Rev Lett; 2009 Nov; 103(22):227203. PubMed ID: 20366124 [TBL] [Abstract][Full Text] [Related]
13. Quantum heat engine with coupled superconducting resonators. Hardal AÜC; Aslan N; Wilson CM; Müstecaplıoğlu ÖE Phys Rev E; 2017 Dec; 96(6-1):062120. PubMed ID: 29347310 [TBL] [Abstract][Full Text] [Related]
14. Observation of quantum oscillations between a Josephson phase qubit and a microscopic resonator using fast readout. Cooper KB; Steffen M; McDermott R; Simmonds RW; Oh S; Hite DA; Pappas DP; Martinis JM Phys Rev Lett; 2004 Oct; 93(18):180401. PubMed ID: 15525134 [TBL] [Abstract][Full Text] [Related]
15. A scanning transmon qubit for strong coupling circuit quantum electrodynamics. Shanks WE; Underwood DL; Houck AA Nat Commun; 2013; 4():1991. PubMed ID: 23744062 [TBL] [Abstract][Full Text] [Related]
16. Quantum state preparation and tomography of entangled mechanical resonators. Wollack EA; Cleland AY; Gruenke RG; Wang Z; Arrangoiz-Arriola P; Safavi-Naeini AH Nature; 2022 Apr; 604(7906):463-467. PubMed ID: 35444325 [TBL] [Abstract][Full Text] [Related]
17. Resolving the energy levels of a nanomechanical oscillator. Arrangoiz-Arriola P; Wollack EA; Wang Z; Pechal M; Jiang W; McKenna TP; Witmer JD; Van Laer R; Safavi-Naeini AH Nature; 2019 Jul; 571(7766):537-540. PubMed ID: 31341303 [TBL] [Abstract][Full Text] [Related]
18. Quantum heating of a nonlinear resonator probed by a superconducting qubit. Ong FR; Boissonneault M; Mallet F; Doherty AC; Blais A; Vion D; Esteve D; Bertet P Phys Rev Lett; 2013 Jan; 110(4):047001. PubMed ID: 25166193 [TBL] [Abstract][Full Text] [Related]
19. Xue JJ; Liu WX; Liang SS; Fang AP; Wang X; Li HR Opt Express; 2023 Jan; 31(3):4580-4598. PubMed ID: 36785422 [TBL] [Abstract][Full Text] [Related]
20. Decoherence in josephson phase qubits from junction resonators. Simmonds RW; Lang KM; Hite DA; Nam S; Pappas DP; Martinis JM Phys Rev Lett; 2004 Aug; 93(7):077003. PubMed ID: 15324267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]