These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 17280266)

  • 1. Sterile neutrinos, dark matter, and pulsar velocities in models with a Higgs singlet.
    Kusenko A
    Phys Rev Lett; 2006 Dec; 97(24):241301. PubMed ID: 17280266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relic keV sterile neutrinos and reionization.
    Biermann PL; Kusenko A
    Phys Rev Lett; 2006 Mar; 96(9):091301. PubMed ID: 16606252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cosmologically safe eV-scale sterile neutrinos and improved dark matter structure.
    Dasgupta B; Kopp J
    Phys Rev Lett; 2014 Jan; 112(3):031803. PubMed ID: 24484131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Holographic dark matter and Higgs models.
    Díaz-Cruz JL
    Phys Rev Lett; 2008 Jun; 100(22):221802. PubMed ID: 18643414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Status of the scalar singlet dark matter model.
    ; Athron P; Balázs C; Bringmann T; Buckley A; Chrząszcz M; Conrad J; Cornell JM; Dal LA; Edsjö J; Farmer B; Jackson P; Kahlhoefer F; Krislock A; Kvellestad A; McKay J; Mahmoudi F; Martinez GD; Putze A; Raklev A; Rogan C; Saavedra A; Savage C; Scott P; Serra N; Weniger C; White M
    Eur Phys J C Part Fields; 2017; 77(8):568. PubMed ID: 32009844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Little composite dark matter.
    Balkin R; Perez G; Weiler A
    Eur Phys J C Part Fields; 2018; 78(2):104. PubMed ID: 29445313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring the Higgs boson self-coupling at the Large Hadron Collider.
    Baur U; Plehn T; Rainwater D
    Phys Rev Lett; 2002 Oct; 89(15):151801. PubMed ID: 12365980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light minimal supersymmetric standard model Higgs boson scenario and its test at hadron colliders.
    Belyaev A; Cao QH; Nomura D; Tobe K; Yuan CP
    Phys Rev Lett; 2008 Feb; 100(6):061801. PubMed ID: 18352454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sterile neutrinos as the origin of dark and baryonic matter.
    Canetti L; Drewes M; Shaposhnikov M
    Phys Rev Lett; 2013 Feb; 110(6):061801. PubMed ID: 23432234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viable dark matter via radiative symmetry breaking in a scalar singlet Higgs portal extension of the standard model.
    Steele TG; Wang ZW; Contreras D; Mann RB
    Phys Rev Lett; 2014 May; 112(17):171602. PubMed ID: 24836235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lower limit on dark matter production at the CERN Large Hadron Collider.
    Feng JL; Su S; Takayama F
    Phys Rev Lett; 2006 Apr; 96(15):151802. PubMed ID: 16712148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffractive Higgs boson production at the Fermilab Tevatron and the CERN Large Hadron Collider.
    Enberg R; Ingelman G; Kissavos A; Tîmneanu N
    Phys Rev Lett; 2002 Aug; 89(8):081801. PubMed ID: 12190456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Limits for Higgs-Portal Dark Matter from LHC Searches.
    Hoferichter M; Klos P; Menéndez J; Schwenk A
    Phys Rev Lett; 2017 Nov; 119(18):181803. PubMed ID: 29219546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Realistic sterile neutrino dark matter with keV mass does not contradict cosmological bounds.
    Boyarsky A; Lesgourgues J; Ruchayskiy O; Viel M
    Phys Rev Lett; 2009 May; 102(20):201304. PubMed ID: 19519017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bounds on the nonminimal coupling of the Higgs boson to gravity.
    Atkins M; Calmet X
    Phys Rev Lett; 2013 Feb; 110(5):051301. PubMed ID: 23414012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinguishing the higgs boson from the dilaton at the large hadron collider.
    Goldberger WD; Grinstein B; Skiba W
    Phys Rev Lett; 2008 Mar; 100(11):111802. PubMed ID: 18517776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining the structure of Higgs couplings at the CERN LargeHadron Collider.
    Plehn T; Rainwater D; Zeppenfeld D
    Phys Rev Lett; 2002 Feb; 88(5):051801. PubMed ID: 11863713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Singlino resonant dark matter and 125 GeV Higgs boson in high-scale supersymmetry.
    Ishikawa K; Kitahara T; Takimoto M
    Phys Rev Lett; 2014 Sep; 113(13):131801. PubMed ID: 25302880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Next-to-next-to-leading-order subtraction formalism in hadron collisions and its application to Higgs-boson production at the large hadron collider.
    Catani S; Grazzini M
    Phys Rev Lett; 2007 Jun; 98(22):222002. PubMed ID: 17677837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermally generated gauge singlet scalars as self-interacting dark matter.
    McDonald J
    Phys Rev Lett; 2002 Mar; 88(9):091304. PubMed ID: 11863993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.