These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
47. Microscopic Study of Proton Kinetic Energy Anomaly for Nanoconfined Water. Moid M; Finkelstein Y; Moreh R; Maiti PK J Phys Chem B; 2020 Jan; 124(1):190-198. PubMed ID: 31804825 [TBL] [Abstract][Full Text] [Related]
48. Hydrogen bond ordering in ice V and the transition to ice XIII. Knight C; Singer SJ J Chem Phys; 2008 Oct; 129(16):164513. PubMed ID: 19045290 [TBL] [Abstract][Full Text] [Related]
49. Low-Dimensional Confined Ice Has the Electronic Signature of Liquid Water. Yun Y; Khaliullin RZ; Jung Y J Phys Chem Lett; 2019 Apr; 10(8):2008-2016. PubMed ID: 30946585 [TBL] [Abstract][Full Text] [Related]
50. Hydrogen-bond topology and the ice VII/VIII and ice Ih/XI proton-ordering phase transitions. Singer SJ; Kuo JL; Hirsch TK; Knight C; Ojamäe L; Klein ML Phys Rev Lett; 2005 Apr; 94(13):135701. PubMed ID: 15904003 [TBL] [Abstract][Full Text] [Related]
51. Quantum Coherence and Temperature Dependence of the Anomalous State of Nanoconfined Water in Carbon Nanotubes. Reiter GF; Deb A; Sakurai Y; Itou M; Kolesnikov AI J Phys Chem Lett; 2016 Nov; 7(22):4433-4437. PubMed ID: 27749075 [TBL] [Abstract][Full Text] [Related]
52. Kinetic aspects of the thermostatted growth of ice from supercooled water in simulations. Weiss VC; Rullich M; Köhler C; Frauenheim T J Chem Phys; 2011 Jul; 135(3):034701. PubMed ID: 21787017 [TBL] [Abstract][Full Text] [Related]
53. Mechanism of fast proton transport along one-dimensional water chains confined in carbon nanotubes. Cao Z; Peng Y; Yan T; Li S; Li A; Voth GA J Am Chem Soc; 2010 Aug; 132(33):11395-7. PubMed ID: 20669967 [TBL] [Abstract][Full Text] [Related]
54. Changes in the zero-point energy of the protons as the source of the binding energy of water to A-phase DNA. Reiter GF; Senesi R; Mayers J Phys Rev Lett; 2010 Oct; 105(14):148101. PubMed ID: 21230870 [TBL] [Abstract][Full Text] [Related]
55. Inelastic neutron scattering studies of the interaction between water and some amino acids. Zhang Y; Zhang P; Ford RC; Han S; Li J J Phys Chem B; 2005 Sep; 109(38):17784-6. PubMed ID: 16853278 [TBL] [Abstract][Full Text] [Related]
56. Pronounced microheterogeneity in a sorbitol-water mixture observed through variable temperature neutron scattering. Chou SG; Soper AK; Khodadadi S; Curtis JE; Krueger S; Cicerone MT; Fitch AN; Shalaev EY J Phys Chem B; 2012 Apr; 116(15):4439-47. PubMed ID: 22448670 [TBL] [Abstract][Full Text] [Related]
58. Investigation of vapor-deposited amorphous ice and irradiated ice by molecular dynamics simulation. Guillot B; Guissani Y J Chem Phys; 2004 Mar; 120(9):4366-82. PubMed ID: 15268606 [TBL] [Abstract][Full Text] [Related]
59. Dielectric constant and low-frequency infrared spectra for liquid water and ice Ih within the E3B model. Shi L; Ni Y; Drews SE; Skinner JL J Chem Phys; 2014 Aug; 141(8):084508. PubMed ID: 25173022 [TBL] [Abstract][Full Text] [Related]
60. Dynamics of water confined in single- and double-wall carbon nanotubes. Mamontov E; Burnham CJ; Chen SH; Moravsky AP; Loong CK; de Souza NR; Kolesnikov AI J Chem Phys; 2006 May; 124(19):194703. PubMed ID: 16729830 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]