These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17280454)

  • 41. The fabrication of plasmonic Au nanovoid trench arrays by guided self-assembly.
    Li XV; Cole RM; Milhano CA; Bartlett PN; Soares BF; Baumberg JJ; de Groot CH
    Nanotechnology; 2009 Jul; 20(28):285309. PubMed ID: 19546497
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Strong coupling in a microcavity LED.
    Tischler JR; Bradley MS; Bulović V; Song JH; Nurmikko A
    Phys Rev Lett; 2005 Jul; 95(3):036401. PubMed ID: 16090759
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Compounding Plasmon⁻Exciton Strong Coupling System with Gold Nanofilm to Boost Rabi Splitting.
    Song T; Chen Z; Zhang W; Lin L; Bao Y; Wu L; Zhou ZK
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30959968
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optical magnetic field enhancement through coupling magnetic plasmons to Tamm plasmons.
    Liu H; Sun X; Yao F; Pei Y; Huang F; Yuan H; Jiang Y
    Opt Express; 2012 Aug; 20(17):19160-7. PubMed ID: 23038556
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Strong coupling between localized and propagating plasmon polaritons.
    Balci S; Karademir E; Kocabas C
    Opt Lett; 2015 Jul; 40(13):3177-80. PubMed ID: 26125396
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of exciton dimensionality on spectral diffusion of single-walled carbon nanotubes.
    Ma X; Roslyak O; Wang F; Duque JG; Piryatinski A; Doorn SK; Htoon H
    ACS Nano; 2014 Oct; 8(10):10613-20. PubMed ID: 25251324
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates.
    Zengin G; Johansson G; Johansson P; Antosiewicz TJ; Käll M; Shegai T
    Sci Rep; 2013 Oct; 3():3074. PubMed ID: 24166360
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interplay between intrachain and interchain interactions in semiconducting polymer assemblies: the HJ-aggregate model.
    Yamagata H; Spano FC
    J Chem Phys; 2012 May; 136(18):184901. PubMed ID: 22583308
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Charge-transfer excitons at organic semiconductor surfaces and interfaces.
    Zhu XY; Yang Q; Muntwiler M
    Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Raman Enhancement via Polariton States Produced by Strong Coupling between a Localized Surface Plasmon and Dye Excitons at Metal Nanogaps.
    Nagasawa F; Takase M; Murakoshi K
    J Phys Chem Lett; 2014 Jan; 5(1):14-9. PubMed ID: 26276174
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes.
    Shi L; Hakala TK; Rekola HT; Martikainen JP; Moerland RJ; Törmä P
    Phys Rev Lett; 2014 Apr; 112(15):153002. PubMed ID: 24785036
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surface plasmon coupled metal enhanced spectral and charge transport properties of poly(3,3'''-dialkylquarterthiophene) Langmuir Schaefer films.
    Pandey RK; Yadav SK; Upadhyay C; Prakash R; Mishra H
    Nanoscale; 2015 Apr; 7(14):6083-92. PubMed ID: 25767916
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions.
    Zengin G; Wersäll M; Nilsson S; Antosiewicz TJ; Käll M; Shegai T
    Phys Rev Lett; 2015 Apr; 114(15):157401. PubMed ID: 25933338
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plasmonic band gap engineering of plasmon-exciton coupling.
    Karademir E; Balci S; Kocabas C; Aydinli A
    Opt Lett; 2014 Oct; 39(19):5697-700. PubMed ID: 25360962
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Second harmonic generation by strongly coupled exciton-plasmons: The role of polaritonic states in nonlinear dynamics.
    Sukharev M; Salomon A; Zyss J
    J Chem Phys; 2021 Jun; 154(24):244701. PubMed ID: 34241359
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Model of finite-momentum excitons driven by surface plasmons in photoexcited carbon nanotubes covered by gold metal films.
    Uryu S; Ajiki H; Ishihara H
    Phys Rev Lett; 2013 Jun; 110(25):257401. PubMed ID: 23829758
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces.
    Kelf TA; Sugawara Y; Baumberg JJ; Abdelsalam M; Bartlett PN
    Phys Rev Lett; 2005 Sep; 95(11):116802. PubMed ID: 16197028
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reclassifying exciton-phonon coupling in molecular aggregates: evidence of strong nonadiabatic coupling in oligothiophene crystals.
    Spano FC; Silvestri L; Spearman P; Raimondo L; Tavazzi S
    J Chem Phys; 2007 Nov; 127(18):184703. PubMed ID: 18020654
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Absorption enhancement of molecules in the weak plasmon-exciton coupling regime.
    Balci S; Karademir E; Kocabas C; Aydinli A
    Opt Lett; 2014 Sep; 39(17):4994-7. PubMed ID: 25166057
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plasmonic opals: observation of a collective molecular exciton mode beyond the strong coupling.
    Fauché P; Gebhardt C; Sukharev M; Vallée RAL
    Sci Rep; 2017 Jun; 7(1):4107. PubMed ID: 28642582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.