BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

534 related articles for article (PubMed ID: 17280559)

  • 21. Blood flow-dependent changes in renal interstitial guanosine 3',5'-cyclic monophosphate in rabbits.
    Nishiyama A; Kimura S; Fukui T; Rahman M; Yoneyama H; Kosaka H; Abe Y
    Am J Physiol Renal Physiol; 2002 Feb; 282(2):F238-44. PubMed ID: 11788437
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cytochrome P-450 monooxygenases in control of renal haemodynamics and arterial pressure in anaesthetized rats.
    Kuczeriszka M; Badzyńska B; Kompanowska-Jezierska E
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 11():179-85. PubMed ID: 17244949
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2005 Sep; 42(3):524-31. PubMed ID: 16171601
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes of renal function and blood pressure after nitric oxide synthase inhibition in renal-denervated conscious rats.
    Girchev R; Mikhov D; Markova P; Vuchidolova V
    Acta Physiol Pharmacol Bulg; 2000; 25(3-4):109-14. PubMed ID: 11688548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Renal hemodynamic interactions of nitric oxide and angiotensin II].
    Nakanishi K; Hamada K; Hara N; Nagai Y; Nakamura K
    Nihon Jinzo Gakkai Shi; 1998 Nov; 40(8):567-72. PubMed ID: 9893455
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Specific features and roles of renal circulation: angiotensin II revisited.
    Sadowski J; Badzyńska B
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 11():169-78. PubMed ID: 17244948
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intrarenal distribution of blood flow in sodium depleted and sodium loaded rats: role of nitric oxide.
    Hably C; Vág J; Tost H; Csabai Z; Bartha J
    Kidney Blood Press Res; 2001; 24(3):166-75. PubMed ID: 11528209
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The regulation of blood perfusion in the renal cortex and medulla by reactive oxygen species and nitric oxide in the anaesthetised rat.
    Ahmeda AF; Johns EJ
    Acta Physiol (Oxf); 2012 Mar; 204(3):443-50. PubMed ID: 21827636
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The intrarenal blood flow distribution and role of nitric oxide in diabetic rats.
    Nakanishi K; Onuma S; Higa M; Nagai Y; Inokuchi T
    Metabolism; 2005 Jun; 54(6):788-92. PubMed ID: 15931616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deficient production of nitric oxide induces volume-dependent hypertension.
    Lahera V; Salazar J; Salom MG; Romero JC
    J Hypertens Suppl; 1992 Dec; 10(7):S173-7. PubMed ID: 1291651
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction of nitric oxide and the cytochrome P-450 system on blood pressure and renal function in the rat: dependence on sodium intake.
    Kuczeriszka M; Olszyński KH; Gąsiorowska A; Sadowski J; Kompanowska-Jezierska E
    Acta Physiol (Oxf); 2011 Apr; 201(4):493-502. PubMed ID: 21073660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in renal haemodynamics induced by indomethacin in the rat involve cytochrome P450 arachidonic acid-dependent epoxygenases.
    Caron N; El Hajjam A; Declèves AE; Joly E; Falck JR; Kramp R
    Clin Exp Pharmacol Physiol; 2004 Oct; 31(10):683-90. PubMed ID: 15554908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clopidogrel Partially Counteracts Adenosine-5'-Diphosphate Effects on Blood Pressure and Renal Hemodynamics and Excretion in Rats.
    Roszkowska-Chojecka MM; Walkowska A; Sadowski J; Dobrowolski L
    Am J Med Sci; 2018 Sep; 356(3):287-295. PubMed ID: 30293555
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of NO and cytochrome P-450-derived eicosanoids in ET-1-induced changes in intrarenal hemodynamics in rats.
    Hercule HC; Oyekan AO
    Am J Physiol Regul Integr Comp Physiol; 2000 Dec; 279(6):R2132-41. PubMed ID: 11080078
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low NaCl intake elevates renal medullary endothelin-1 and endothelin A (ETA) receptor mRNA but not the sensitivity of renal Na+ excretion to ETA receptor blockade in rats.
    Klinger F; Grimm R; Steinbach A; Tanneberger M; Kunert-Keil C; Rettig R; Grisk O
    Acta Physiol (Oxf); 2008 Mar; 192(3):429-42. PubMed ID: 17892519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Renal tissue NO and intrarenal haemodynamics during experimental variations of NO content in anaesthetised rats.
    Grzelec-Mojzesowicz M; Sadowski J
    J Physiol Pharmacol; 2007 Mar; 58(1):149-63. PubMed ID: 17440233
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interactions between nitric oxide and superoxide on the neural regulation of proximal fluid reabsorption in hypertensive rats.
    Wu XC; Johns EJ
    Exp Physiol; 2004 May; 89(3):255-61. PubMed ID: 15123560
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential effect of endothelin-1 on renal regional blood flow: role of nitric oxide.
    Rubinstein I; Gurbanov K; Hoffman A; Better OS; Winaver J
    J Cardiovasc Pharmacol; 1995; 26 Suppl 3():S208-10. PubMed ID: 8587364
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of chronic nitric oxide inhibition on the renal excretory response to leptin.
    Villarreal D; Reams G; Samar H; Spear R; Freeman RH
    Obes Res; 2004 Jun; 12(6):1006-10. PubMed ID: 15229341
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential effect of frusemide on renal medullary and cortical blood flow in the anaesthetised rat.
    Dobrowolski L; B dzyńska B; Sadowski J
    Exp Physiol; 2000 Nov; 85(6):783-9. PubMed ID: 11187972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.