BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 17280709)

  • 1. Uptake and localization of gaseous phenol and p-cresol in plant leaves.
    Beattie GA; Seibel JR
    Chemosphere; 2007 Jun; 68(3):528-36. PubMed ID: 17280709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial degradation of airborne phenol in the phyllosphere.
    Sandhu A; Halverson LJ; Beattie GA
    Environ Microbiol; 2007 Feb; 9(2):383-92. PubMed ID: 17222136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of phenol and cresols at low temperatures using a suspended-carrier biofilm process.
    Perron N; Welander U
    Chemosphere; 2004 Apr; 55(1):45-50. PubMed ID: 14720545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. No evidence for cerium dioxide nanoparticle translocation in maize plants.
    Birbaum K; Brogioli R; Schellenberg M; Martinoia E; Stark WJ; Günther D; Limbach LK
    Environ Sci Technol; 2010 Nov; 44(22):8718-23. PubMed ID: 20964359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of phenol, o-cresol, and p-cresol with a clay-rich soil sample.
    Dolatto RG; Messerschmidt I; Pereira BF; de Oliveira T; Pillon CN; Abate G
    J Agric Food Chem; 2010 Feb; 58(4):2426-32. PubMed ID: 20095566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions.
    Bi X; Feng X; Yang Y; Li X; Shin GP; Li F; Qiu G; Li G; Liu T; Fu Z
    Environ Pollut; 2009 Mar; 157(3):834-9. PubMed ID: 19100668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling bioaccumulation of semi-volatile organic compounds (SOCs) from air in plants based on allometric principles.
    Steyaert NL; Hauck M; Van Hulle SW; Hendriks AJ
    Chemosphere; 2009 Oct; 77(6):727-32. PubMed ID: 19766288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct roles of electric and hydraulic signals on the reaction of leaf gas exchange upon re-irrigation in Zea mays L.
    Grams TE; Koziolek C; Lautner S; Matyssek R; Fromm J
    Plant Cell Environ; 2007 Jan; 30(1):79-84. PubMed ID: 17177878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of biodegradability of phenolic compounds, characteristic to wastewater of the oil-shale chemical industry, on activated sludge by oxygen uptake measurement.
    Lepik R; Tenno T
    Environ Technol; 2012; 33(1-3):329-39. PubMed ID: 22519119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Phenol conjugation with peptides and final transformations of conjugates in English ryegrass seedlings].
    Chrikishvilli DI; Lomidze EP; Mitaishvilli TI
    Prikl Biokhim Mikrobiol; 2005; 41(6):676-80. PubMed ID: 16358759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of growth and multi substrate degradation by an indigenous mixed microbial culture isolated from a wastewater treatment plant in Guwahati, India.
    Saravanan P; Pakshirajan K; Saha PK
    Water Sci Technol; 2008; 58(5):1101-6. PubMed ID: 18824810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of ozone on juvenile maize (Zea mays L.) plant photosynthesis: effects on vegetative biomass, pigmentation, and carboxylases (PEPc and Rubisco).
    Leitao L; Bethenod O; Biolley JP
    Plant Biol (Stuttg); 2007 Jul; 9(4):478-88. PubMed ID: 17401809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combination of ultrasound and oxidative enzyme: sono-enzyme degradation of phenols in a mixture.
    Entezari MH; Pétrier C
    Ultrason Sonochem; 2005 Mar; 12(4):283-8. PubMed ID: 15501711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Foliar limonene uptake scales positively with leaf lipid content: "non-emitting" species absorb and release monoterpenes.
    Noe SM; Copolovici L; Niinemets U; Vaino E
    Plant Biol (Stuttg); 2008 Jan; 10(1):129-37. PubMed ID: 17564947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth, nitrogen uptake and flow in maize plants affected by root growth restriction.
    Xu L; Niu J; Li C; Zhang F
    J Integr Plant Biol; 2009 Jul; 51(7):689-97. PubMed ID: 19566647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces--further evidence for a stomatal pathway.
    Eichert T; Goldbach HE
    Physiol Plant; 2008 Apr; 132(4):491-502. PubMed ID: 18334002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of leaf surface waxes on leaf colonization by Pantoea agglomerans and Clavibacter michiganensis.
    Marcell LM; Beattie GA
    Mol Plant Microbe Interact; 2002 Dec; 15(12):1236-44. PubMed ID: 12481996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grouping of phenol hydroxylase and catechol 2,3-dioxygenase genes among phenol- and p-cresol-degrading Pseudomonas species and biotypes.
    Merimaa M; Heinaru E; Liivak M; Vedler E; Heinaru A
    Arch Microbiol; 2006 Oct; 186(4):287-96. PubMed ID: 16906406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phototransformation of pesticides on plant leaves: the case of sulcotrione.
    Ter Halle A; Wiszniowski J; Richard C
    Commun Agric Appl Biol Sci; 2007; 72(2):45-52. PubMed ID: 18399423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gel-based proteomics reveals potential novel protein markers of ozone stress in leaves of cultivated bean and maize species of Panama.
    Torres NL; Cho K; Shibato J; Hirano M; Kubo A; Masuo Y; Iwahashi H; Jwa NS; Agrawal GK; Rakwal R
    Electrophoresis; 2007 Dec; 28(23):4369-81. PubMed ID: 17987633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.