These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 17280815)

  • 1. Vocal folds detect ionic perturbations on the luminal surface: an in vitro investigation.
    Sivasankar M; Fisher KV
    J Voice; 2008 Jul; 22(4):408-19. PubMed ID: 17280815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vocal fold epithelial response to luminal osmotic perturbation.
    Sivasankar M; Fisher KV
    J Speech Lang Hear Res; 2007 Aug; 50(4):886-98. PubMed ID: 17675594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of long-acting beta adrenergic agonists on vocal fold ion transport.
    Sivasankar M; Blazer-Yost B
    Laryngoscope; 2009 Mar; 119(3):602-7. PubMed ID: 19177504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cystic fibrosis transmembrane conductance regulator and chloride-dependent ion fluxes of ovine vocal fold epithelium.
    Leydon C; Fisher KV; Lodewyck-Falciglia D
    J Speech Lang Hear Res; 2009 Jun; 52(3):745-54. PubMed ID: 18806217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunolocalization of aquaporins in vocal fold epithelia.
    Lodewyck D; Menco B; Fisher K
    Arch Otolaryngol Head Neck Surg; 2007 Jun; 133(6):557-63. PubMed ID: 17576906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypertonic challenge to porcine vocal folds: effects on epithelial barrier function.
    Sivasankar M; Erickson E; Rosenblatt M; Branski RC
    Otolaryngol Head Neck Surg; 2010 Jan; 142(1):79-84. PubMed ID: 20096227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utility of cell viability assays for use with ex vivo vocal fold epithelial tissue.
    Erickson-DiRenzo E; Sivasankar MP; Thibeault SL
    Laryngoscope; 2015 May; 125(5):E180-5. PubMed ID: 25511412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transdifferentiation of vocal-fold stellate cells and all-trans retinol-induced deactivation.
    Fuja TJ; Probst-Fuja MN; Titze IR
    Cell Tissue Res; 2005 Dec; 322(3):417-24. PubMed ID: 16047162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bicarbonate availability for vocal fold epithelial defense to acidic challenge.
    Durkes A; Sivasankar MP
    Ann Otol Rhinol Laryngol; 2014 Jan; 123(1):71-6. PubMed ID: 24574427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental study of the effects of surface mucus viscosity on the glottic cycle.
    Ayache S; Ouaknine M; Dejonkere P; Prindere P; Giovanni A
    J Voice; 2004 Mar; 18(1):107-15. PubMed ID: 15070230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of a low frequency sound source in Mysticeti (baleen whales): anatomical establishment of a vocal fold homolog.
    Reidenberg JS; Laitman JT
    Anat Rec (Hoboken); 2007 Jun; 290(6):745-59. PubMed ID: 17516447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oral breathing challenge in participants with vocal attrition.
    Sivasankar M; Fisher KV
    J Speech Lang Hear Res; 2003 Dec; 46(6):1416-27. PubMed ID: 14700365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-duration accelerated breathing challenges affect phonation.
    Sivasankar M; Erickson E
    Laryngoscope; 2009 Aug; 119(8):1658-63. PubMed ID: 19522007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tight junction-related barrier contributes to the electrophysiological asymmetry across vocal fold epithelium.
    Zhang Q; Fisher K
    PLoS One; 2012; 7(3):e34017. PubMed ID: 22442739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ionic composition of airway surface liquid and coughing.
    Higenbottam T
    Bull Eur Physiopathol Respir; 1987; 23 Suppl 10():25s-27s. PubMed ID: 3664022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of three nebulized osmotic agents in the dry larynx.
    Tanner K; Roy N; Merrill RM; Elstad M
    J Speech Lang Hear Res; 2007 Jun; 50(3):635-46. PubMed ID: 17538106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of a constriction in the near field of the vocal folds: physical modeling and experimental validation.
    Bailly L; Pelorson X; Henrich N; Ruty N
    J Acoust Soc Am; 2008 Nov; 124(5):3296-308. PubMed ID: 19045812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vocal fold surface hydration: a review.
    Leydon C; Sivasankar M; Falciglia DL; Atkins C; Fisher KV
    J Voice; 2009 Nov; 23(6):658-65. PubMed ID: 19111440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of transient receptor potential channel vanilloid subfamilies in the mouse larynx.
    Hamamoto T; Takumida M; Hirakawa K; Takeno S; Tatsukawa T
    Acta Otolaryngol; 2008 Jun; 128(6):685-93. PubMed ID: 18568506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic adenosine monophosphate regulation of ion transport in porcine vocal fold mucosae.
    Sivasankar M; Nofziger C; Blazer-Yost B
    Laryngoscope; 2008 Aug; 118(8):1511-7. PubMed ID: 18596479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.