These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 172810)

  • 1. Effect of depolarizing agents on the adenosine-3',5'-monophosphate content of the bovine superior cervical ganglion.
    Kalix P; Roch P
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 291(2):131-7. PubMed ID: 172810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depolarizing media increase the guanosine 3',5'-monophosphate content of bovine superior cervical ganglion.
    Kalix P
    J Neurochem; 1976 Dec; 27(6):1563-4. PubMed ID: 187734
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of decentralization and glucose withdrawal on the potassium-induced cAMP increase in the rabbit superior cervical ganglion.
    Kalix P
    Eur J Pharmacol; 1976 Oct; 39(2):313-21. PubMed ID: 185063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depolarizing agent-induced cyclic AMP accumulation in isolated rat spinal cord.
    Jones DJ
    Life Sci; 1982 Aug; 31(5):479-88. PubMed ID: 6290816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of depolarizing agents on accumulation of cyclic adenosine 3',5'-monophosphate in cerebral cortical slices.
    Shimizu H; Daly JW
    Eur J Pharmacol; 1972 Feb; 17(2):240-52. PubMed ID: 4337348
    [No Abstract]   [Full Text] [Related]  

  • 6. Effects of potassium, veratridine, and scorpion venom on calcium accumulation and transmitter release by nerve terminals in vitro.
    Blaustein MP
    J Physiol; 1975 Jun; 247(3):617-55. PubMed ID: 238033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proceedings: Effect of potassium- and veratridine-depolarization on the synthesis of cyclic AMP in the superior cervical ganglion.
    Roch P; Kalix P
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 287 Suppl():R51. PubMed ID: 167309
    [No Abstract]   [Full Text] [Related]  

  • 8. Modulation of cyclic AMP levels in the bovine superior cervical ganglion by prostaglandin E1 and dopamine.
    Tomasi V; Biondi C; Trevisani A; Martini M; Perri V
    J Neurochem; 1977 Jun; 28(6):1289-97. PubMed ID: 195015
    [No Abstract]   [Full Text] [Related]  

  • 9. The long-term regulation of tyrosine hydroxylase activity in cultured sympathetic ganglia: role of ganglionic noradrenaline content.
    Mackay AV
    Br J Pharmacol; 1974 Aug; 51(4):509-20. PubMed ID: 4155975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Similar effects of phenytoin and tetrodotoxin on cyclic nucleotid regulation in depolarized brain tissue.
    Ferrendelli JA; Kinscherf DA
    J Pharmacol Exp Ther; 1978 Dec; 207(3):787-93. PubMed ID: 731431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cyclic nucleotide content of the rat superior cervical ganglion.
    Quenzer LF; Patterson BA; Volle RL
    J Pharmacol Exp Ther; 1980 Nov; 215(2):297-303. PubMed ID: 6255125
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of diaminopropionate, deoxyadenosine, and theophylline on stimulated formation of cyclic AMP and GMP by depolarizing agents in slices of guinea-pig cerebral cortex.
    Shimizu H; Yamamura Y
    J Neurochem; 1977 Feb; 28(2):383-8. PubMed ID: 190353
    [No Abstract]   [Full Text] [Related]  

  • 13. Origin of the after-hyperpolarization that follows removal of depolarizing agents from the isolated superior cervical ganglion of the rat.
    Brown DA; Brownstein MJ; Scholfield CN
    Br J Pharmacol; 1972 Apr; 44(4):651-71. PubMed ID: 4625268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic adenosine 3',5'-monophosphate formation in brain slices: stimulation by batrachotoxin, ouabain, veratridine, and potassium ions.
    Shimizu H; Creveling CR; Daly JW
    Mol Pharmacol; 1970 Mar; 6(2):184-8. PubMed ID: 4313865
    [No Abstract]   [Full Text] [Related]  

  • 15. Adenosine 3',5'-monophosphate in bovine superior cervical ganglion: effect of high extracellular potassium.
    Roch P; Kalix P
    Biochem Pharmacol; 1975 Jul; 24(13-14):1293-6. PubMed ID: 238538
    [No Abstract]   [Full Text] [Related]  

  • 16. Uptake and metabolism of cyclic AMP in rabbit choroid plexus in vitro.
    Hammers R; Clarenbach P; Lindl T; Cramer H
    Neuropharmacology; 1977 Feb; 16(2):135-41. PubMed ID: 190555
    [No Abstract]   [Full Text] [Related]  

  • 17. Relation between catecholamine-induced cyclic AMP changes and hyperpolarization in isolated rat sympathetic ganglia.
    Brown DA; Caulfield MP; Kirby PJ
    J Physiol; 1979 May; 290(2):441-51. PubMed ID: 224171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ouabain-sensitive fluxes of sodium and potassium in squid giant axons.
    Baker PF; Blaustein MP; Keynes RD; Manil J; Shaw TI; Steinhardt RA
    J Physiol; 1969 Feb; 200(2):459-96. PubMed ID: 5812424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potassium-dependent stimulation of respiration in brown fat cells by fatty acids and lipolytic agents.
    Reed N; Fain JN
    J Biol Chem; 1968 Dec; 243(23):6077-83. PubMed ID: 5723452
    [No Abstract]   [Full Text] [Related]  

  • 20. Calcium-dependent regulation of guanosine 3',5'-monophosphate in renal cortex: effects of ionophore A23187 and tetracaine and evidence for independent control of adenosine 3',5'-monophosphate.
    DeRubertis FR; Craven PA
    Metabolism; 1976 Oct; 25(10):1113-27. PubMed ID: 184365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.