These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 17281299)

  • 1. A general recurrent neural network approach to model genetic regulatory networks.
    Hu X; Maglia A; Wunsch D
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():4735-8. PubMed ID: 17281299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An approach for reduction of false predictions in reverse engineering of gene regulatory networks.
    Khan A; Saha G; Pal RK
    J Theor Biol; 2018 May; 445():9-30. PubMed ID: 29462626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-Scale Recurrent Neural Network Based Modelling of Gene Regulatory Network Using Cuckoo Search-Flower Pollination Algorithm.
    Mandal S; Khan A; Saha G; Pal RK
    Adv Bioinformatics; 2016; 2016():5283937. PubMed ID: 26989410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recurrent neural network-based modeling of gene regulatory network using elephant swarm water search algorithm.
    Mandal S; Saha G; Pal RK
    J Bioinform Comput Biol; 2017 Aug; 15(4):1750016. PubMed ID: 28659000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstructing Genetic Regulatory Networks Using Two-Step Algorithms with the Differential Equation Models of Neural Networks.
    Chen CK
    Interdiscip Sci; 2018 Dec; 10(4):823-835. PubMed ID: 28748400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reverse engineering of gene regulatory networks based on S-systems and Bat algorithm.
    Mandal S; Khan A; Saha G; Pal RK
    J Bioinform Comput Biol; 2016 Jun; 14(3):1650010. PubMed ID: 26932274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inference of genetic regulatory networks with recurrent neural network models using particle swarm optimization.
    Xu R; Wunsch Ii D; Frank R
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(4):681-92. PubMed ID: 17975278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures.
    Kentzoglanakis K; Poole M
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):358-71. PubMed ID: 21576756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse engineering of gene regulatory network using restricted gene expression programming.
    Yang B; Liu S; Zhang W
    J Bioinform Comput Biol; 2016 Oct; 14(5):1650021. PubMed ID: 27338130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene networks reconstruction and time-series prediction from microarray data using recurrent neural fuzzy networks.
    Maraziotis IA; Dragomir A; Bezerianos A
    IET Syst Biol; 2007 Jan; 1(1):41-50. PubMed ID: 17370428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reverse engineering gene regulatory networks: coupling an optimization algorithm with a parameter identification technique.
    Hsiao YT; Lee WP
    BMC Bioinformatics; 2014; 15 Suppl 15(Suppl 15):S8. PubMed ID: 25474560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reverse engineering genetic networks using evolutionary computation.
    Noman N; Iba H
    Genome Inform; 2005; 16(2):205-14. PubMed ID: 16901103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural network model of gene expression.
    Vohradský J
    FASEB J; 2001 Mar; 15(3):846-54. PubMed ID: 11259403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recurrent neural network based hybrid model for reconstructing gene regulatory network.
    Raza K; Alam M
    Comput Biol Chem; 2016 Oct; 64():322-334. PubMed ID: 27570069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated approach to infer dynamic protein-gene interactions - A case study of the human P53 protein.
    Wang J; Wu Q; Hu XT; Tian T
    Methods; 2016 Nov; 110():3-13. PubMed ID: 27514497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.
    Castro JC; Valdés I; Gonzalez-García LN; Danies G; Cañas S; Winck FV; Ñústez CE; Restrepo S; Riaño-Pachón DM
    Theor Biol Med Model; 2019 Apr; 16(1):7. PubMed ID: 30961611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene networks inference using dynamic Bayesian networks.
    Perrin BE; Ralaivola L; Mazurie A; Bottani S; Mallet J; d'Alché-Buc F
    Bioinformatics; 2003 Oct; 19 Suppl 2():ii138-48. PubMed ID: 14534183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural systems identification of genetic regulatory networks.
    Xiong H; Choe Y
    Bioinformatics; 2008 Feb; 24(4):553-60. PubMed ID: 18175769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inference of genetic regulatory networks with recurrent neural network models.
    Xu R; Hu X; Wunsch DC
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():2905-8. PubMed ID: 17270885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.