These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 17281457)

  • 1. Application of wavelet in speech processing of cochlear implant.
    Tian G; Shuli Y; Datian Y
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():5339-42. PubMed ID: 17281457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Undecimated Wavelet-based Method for Cochlear Implant Speech Processing.
    Hajiaghababa F; Kermani S; Marateb HR
    J Med Signals Sens; 2014 Oct; 4(4):247-55. PubMed ID: 25426428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel speech-processing strategy incorporating tonal information for cochlear implants.
    Lan N; Nie KB; Gao SK; Zeng FG
    IEEE Trans Biomed Eng; 2004 May; 51(5):752-60. PubMed ID: 15132501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavelet filtering based on Mellin transform dedicated to cochlear prostheses.
    Derbel A; Kalel F; Hamida AB; Samet M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1900-3. PubMed ID: 18002353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical stimulation of the auditory nerve: the coding of frequency, the perception of pitch and the development of cochlear implant speech processing strategies for profoundly deaf people.
    Clark GM
    Clin Exp Pharmacol Physiol; 1996 Sep; 23(9):766-76. PubMed ID: 8911712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The application of bionic wavelet transform to speech signal processing in cochlear implants using neural network simulations.
    Yao J; Zhang YT
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1299-309. PubMed ID: 12450360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Across-frequency delays based on the cochlear traveling wave: enhanced speech presentation for cochlear implants.
    Taft DA; Grayden DB; Burkitt AN
    IEEE Trans Biomed Eng; 2010 Mar; 57(3):596-606. PubMed ID: 19846368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The design and validation of a hybrid digital-signal-processing plug-in for traditional cochlear implant speech processors.
    Hajiaghababa F; Marateb HR; Kermani S
    Comput Methods Programs Biomed; 2018 Jun; 159():103-109. PubMed ID: 29650304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association Between Flat-Panel Computed Tomographic Imaging-Guided Place-Pitch Mapping and Speech and Pitch Perception in Cochlear Implant Users.
    Jiam NT; Gilbert M; Cooke D; Jiradejvong P; Barrett K; Caldwell M; Limb CJ
    JAMA Otolaryngol Head Neck Surg; 2019 Feb; 145(2):109-116. PubMed ID: 30477013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cochlear Implant Outcomes in Cochlea Nerve Aplasia and Hypoplasia.
    Birman CS; Powell HR; Gibson WP; Elliott EJ
    Otol Neurotol; 2016 Jun; 37(5):438-45. PubMed ID: 27050647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speech processing studies using an acoustic model of a multiple-channel cochlear implant.
    Blamey PJ; Dowell RC; Tong YC; Brown AM; Luscombe SM; Clark GM
    J Acoust Soc Am; 1984 Jul; 76(1):104-10. PubMed ID: 6547734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Research on spectrum feature of speech processing strategy for cochlear implant].
    Chen Y; Wang J; Chen W; Guan M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2017 Oct; 34(5):760-766. PubMed ID: 29761963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of a pitch perception model to investigate the effect of stimulation field spread on the pitch ranking abilities of cochlear implant recipients.
    Erfanian Saeedi N; Blamey PJ; Burkitt AN; Grayden DB
    Hear Res; 2014 Oct; 316():129-37. PubMed ID: 25193552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The multi-channel cochlear implant: multi-disciplinary development of electrical stimulation of the cochlea and the resulting clinical benefit.
    Clark GM
    Hear Res; 2015 Apr; 322():4-13. PubMed ID: 25159273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preservation of hearing in cochlear implant surgery: advantages of combined electrical and acoustical speech processing.
    Gantz BJ; Turner C; Gfeller KE; Lowder MW
    Laryngoscope; 2005 May; 115(5):796-802. PubMed ID: 15867642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved fundamental frequency coding in cochlear implant signal processing.
    Milczynski M; Wouters J; van Wieringen A
    J Acoust Soc Am; 2009 Apr; 125(4):2260-71. PubMed ID: 19354401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new approach for speech synthesis in cochlear implant systems based on electrophysiological factors.
    Zarei E; Sadjedi H
    Technol Health Care; 2017; 25(2):221-235. PubMed ID: 27689564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological basis for cochlear and auditory brainstem implants.
    Møller AR
    Adv Otorhinolaryngol; 2006; 64():206-223. PubMed ID: 16891844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Cochlear implant in children: rational, indications and cost/efficacy].
    Martini A; Bovo R; Trevisi P; Forli F; Berrettini S
    Minerva Pediatr; 2013 Jun; 65(3):325-39. PubMed ID: 23685383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing Chinese tone recognition by manipulating amplitude envelope: implications for cochlear implants.
    Luo X; Fu QJ
    J Acoust Soc Am; 2004 Dec; 116(6):3659-67. PubMed ID: 15658716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.