These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 17281841)

  • 1. Application of wearable inertial sensors in stroke rehabilitation.
    Zhou H; Hu H; Harris N
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():6825-8. PubMed ID: 17281841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inertial-Robotic Motion Tracking in End-Effector-Based Rehabilitation Robots.
    Passon A; Schauer T; Seel T
    Front Robot AI; 2020; 7():554639. PubMed ID: 33501318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?
    Lui J; Menon C
    Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertial Sensors in Swimming: Detection of Stroke Phases through 3D Wrist Trajectory.
    Cortesi M; Giovanardi A; Gatta G; Mangia AL; Bartolomei S; Fantozzi S
    J Sports Sci Med; 2019 Sep; 18(3):438-447. PubMed ID: 31427865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Upper Limb Position Estimation Based on Angular Displacement Sensors for Wearable Devices.
    Contreras-González AF; Ferre M; Sánchez-Urán MÁ; Sáez-Sáez FJ; Blaya Haro F
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33198097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactive wearable systems for upper body rehabilitation: a systematic review.
    Wang Q; Markopoulos P; Yu B; Chen W; Timmermans A
    J Neuroeng Rehabil; 2017 Mar; 14(1):20. PubMed ID: 28284228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification.
    Biswas D; Cranny A; Gupta N; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Hum Mov Sci; 2015 Apr; 40():59-76. PubMed ID: 25528632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drift-Free 3D Orientation and Displacement Estimation for Quasi-Cyclical Movements Using One Inertial Measurement Unit: Application to Running.
    Zandbergen MA; Reenalda J; van Middelaar RP; Ferla RI; Buurke JH; Veltink PH
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-Time Limb Motion Tracking with a Single IMU Sensor for Physical Therapy Exercises.
    Wei W; Kurita K; Kuang J; Gao A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7152-7157. PubMed ID: 34892750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of multiple wearable inertial sensors in upper limb motion tracking.
    Zhou H; Stone T; Hu H; Harris N
    Med Eng Phys; 2008 Jan; 30(1):123-33. PubMed ID: 17251049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A wearable wireless ultrasonic sensor network for human arm motion tracking.
    Qi Y; Soh CB; Gunawan E; Low KS
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5960-3. PubMed ID: 25571354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Miniature low-power inertial sensors: promising technology for implantable motion capture systems.
    Lambrecht JM; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1138-47. PubMed ID: 24846651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetometer-Based Drift Correction During Rest inIMU Arm Motion Tracking.
    Wittmann F; Lambercy O; Gassert R
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30884745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application-Based Production and Testing of a Core-Sheath Fiber Strain Sensor for Wearable Electronics: Feasibility Study of Using the Sensors in Measuring Tri-Axial Trunk Motion Angles.
    Rezaei A; Cuthbert TJ; Gholami M; Menon C
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31623321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upper Limb Position Tracking with a Single Inertial Sensor Using Dead Reckoning Method with Drift Correction Techniques.
    Bai L; Pepper MG; Wang Z; Mulvenna MD; Bond RR; Finlay D; Zheng H
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards the Ambulatory Assessment of Movement Quality in Stroke Survivors using a Wrist-worn Inertial Sensor.
    Lee SI; Jung HT; Park J; Jeong J; Ryu T; Kim Y; Santos VSD; Miranda JGV; Daneault JF
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2825-2828. PubMed ID: 30440989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of bilateral reaching on affected arm motor control in stroke--with and without loading on unaffected arm.
    Chang JJ; Tung WL; Wu WL; Su FC
    Disabil Rehabil; 2006 Dec; 28(24):1507-16. PubMed ID: 17178614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inertial measurements of upper limb motion.
    Zhou H; Hu H; Tao Y
    Med Biol Eng Comput; 2006 Jun; 44(6):479-87. PubMed ID: 16937199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion.
    Filippeschi A; Schmitz N; Miezal M; Bleser G; Ruffaldi E; Stricker D
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28587178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.