BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 17282028)

  • 1. Muscle activity onset time detection using teager-kaiser energy operator.
    Li X; Aruin A
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():7549-52. PubMed ID: 17282028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Teager-Kaiser energy operation of surface EMG improves muscle activity onset detection.
    Li X; Zhou P; Aruin AS
    Ann Biomed Eng; 2007 Sep; 35(9):1532-8. PubMed ID: 17473984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Onset detection in surface electromyographic signals across isometric explosive and ramped contractions: a comparison of computer-based methods.
    Crotty ED; Furlong LM; Hayes K; Harrison AJ
    Physiol Meas; 2021 Apr; 42(3):. PubMed ID: 33725688
    [No Abstract]   [Full Text] [Related]  

  • 4. Teager-Kaiser energy operator signal conditioning improves EMG onset detection.
    Solnik S; Rider P; Steinweg K; DeVita P; Hortobágyi T
    Eur J Appl Physiol; 2010 Oct; 110(3):489-98. PubMed ID: 20526612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of different algorithms based on TKEO for EMG change point detection.
    Wang S; Zhu S; Shang Z
    Physiol Meas; 2022 Jul; 43(7):. PubMed ID: 35697015
    [No Abstract]   [Full Text] [Related]  

  • 6. Teager-Kaiser Operator improves the accuracy of EMG onset detection independent of signal-to-noise ratio.
    Solnik S; DeVita P; Rider P; Long B; Hortobágyi T
    Acta Bioeng Biomech; 2008; 10(2):65-8. PubMed ID: 19032000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of the Teager-Kaiser Energy Operator in an autonomous burst detector to create onset and offset profiles of forearm muscles during reach-to-grasp movements.
    Krabben T; Prange GB; Kobus HJ; Rietman JS; Buurke JH
    Acta Bioeng Biomech; 2016; 18(4):135-144. PubMed ID: 28133386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sample entropy analysis of surface EMG for improved muscle activity onset detection against spurious background spikes.
    Zhang X; Zhou P
    J Electromyogr Kinesiol; 2012 Dec; 22(6):901-7. PubMed ID: 22800657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of focal electroencephalogram signals using higher-order moments in EMD-TKEO domain.
    Chatterjee S
    Healthc Technol Lett; 2019 Jun; 6(3):64-69. PubMed ID: 31341630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the Teagar-Kaiser energy operator and wavelet transform for detection of finger tapping contact and release times using accelerometery.
    O'Callaghan BPF; Flood MW; Lowery MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4596-4599. PubMed ID: 31946888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-cost electromyography - Validation against a commercial system using both manual and automated activation timing thresholds.
    Heywood S; Pua YH; McClelland J; Geigle P; Rahmann A; Bower K; Clark R
    J Electromyogr Kinesiol; 2018 Oct; 42():74-80. PubMed ID: 29980103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of sEMG Onset Detection Methods for Occupational Exoskeletons on Extensive Close-to-Application Data.
    Kreipe S; Helbig T; Witte H; Schumann NP; Anders C
    Bioengineering (Basel); 2024 Jan; 11(2):. PubMed ID: 38391605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust muscle activity onset detection using an unsupervised electromyogram learning framework.
    Liu J; Ying D; Rymer WZ; Zhou P
    PLoS One; 2015; 10(6):e0127990. PubMed ID: 26038820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Portable Ultrasound to Monitor the Neuromuscular Reactivity to Low-Frequency Electrical Stimulation.
    Petraş A; Drăgoi RG; Pupazan V; Drăgoi M; Popa D; Neagu A
    Diagnostics (Basel); 2021 Jan; 11(1):. PubMed ID: 33401607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iterative Assessment of Statistically-Oriented and Standard Algorithms for Determining Muscle Onset with Intramuscular Electromyography.
    Tenan MS; Tweedell AJ; Haynes CA
    J Appl Biomech; 2017 Dec; 33(6):464-468. PubMed ID: 28657852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing instantaneous energy in the EEG: a non-negative, frequency-weighted energy operator.
    O'Toole JM; Temko A; Stevenson N
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3288-91. PubMed ID: 25570693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. M-mode ultrasound used to detect the onset of deep muscle activity.
    Dieterich AV; Pickard CM; Deshon LE; Strauss GR; Gibson W; Davey P; McKay J
    J Electromyogr Kinesiol; 2015 Apr; 25(2):224-31. PubMed ID: 25636500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speech enhancement using empirical mode decomposition and the Teager-Kaiser energy operator.
    Khaldi K; Boudraa AO; Komaty A
    J Acoust Soc Am; 2014 Jan; 135(1):451-9. PubMed ID: 24437785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of statistical and standard algorithms for detecting muscle onset with surface electromyography.
    Tenan MS; Tweedell AJ; Haynes CA
    PLoS One; 2017; 12(5):e0177312. PubMed ID: 28489897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the Robustness of Electromyogram-Pattern Recognition for Prosthetic Control by a Postprocessing Strategy.
    Zhang X; Li X; Samuel OW; Huang Z; Fang P; Li G
    Front Neurorobot; 2017; 11():51. PubMed ID: 29021753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.