These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 17282199)

  • 1. Detection and avoiding ventricular suction of ventricular assist devices.
    Tanaka A; Yoshizawa M; Olegario P; Ogawa D; Abe K; Motomura T; Igo S; Nose Y
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2006():402-5. PubMed ID: 17282199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Outflow control for avoiding atrial suction in a continuous flow total artificial heart.
    Olegario PS; Yoshizawa M; Tanaka A; Abe K; Takeda H; Yambe T; Nitta S
    Artif Organs; 2003 Jan; 27(1):92-8. PubMed ID: 12534719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of the Baylor Gyro permanently implantable centrifugal blood pump as a biventricular assist device.
    Nonaka K; Linneweber J; Ichikawa S; Yoshikawa M; Kawahito S; Mikami M; Motomura T; Ishitoya H; Nishimura I; Oestmann D; Glueck J; Schima H; Wolner E; Shinohara T; Nosé Y
    Artif Organs; 2001 Sep; 25(9):675-82. PubMed ID: 11722341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological control of dual rotary pumps as a biventricular assist device using a master/slave approach.
    Stevens MC; Wilson S; Bradley A; Fraser J; Timms D
    Artif Organs; 2014 Sep; 38(9):766-74. PubMed ID: 24749848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anatomy and Physiology of Left Ventricular Suction Induced by Rotary Blood Pumps.
    Salamonsen RF; Lim E; Moloney J; Lovell NH; Rosenfeldt FL
    Artif Organs; 2015 Aug; 39(8):681-90. PubMed ID: 26146861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A suction detection system for rotary blood pumps based on the Lagrangian support vector machine algorithm.
    Wang Y; Simaan MA
    IEEE J Biomed Health Inform; 2013 May; 17(3):654-63. PubMed ID: 23192602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A control system for rotary blood pumps based on suction detection.
    Ferreira A; Boston JR; Antaki JF
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):656-65. PubMed ID: 19272919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suction detection for the MicroMed DeBakey Left Ventricular Assist Device.
    Voigt O; Benkowski RJ; Morello GF
    ASAIO J; 2005; 51(4):321-8. PubMed ID: 16156293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved left ventricular unloading and circulatory support with synchronized pulsatile left ventricular assistance compared with continuous-flow left ventricular assistance in an acute porcine left ventricular failure model.
    Letsou GV; Pate TD; Gohean JR; Kurusz M; Longoria RG; Kaiser L; Smalling RW
    J Thorac Cardiovasc Surg; 2010 Nov; 140(5):1181-8. PubMed ID: 20546799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vivo Evaluation of Active and Passive Physiological Control Systems for Rotary Left and Right Ventricular Assist Devices.
    Gregory SD; Stevens MC; Pauls JP; Schummy E; Diab S; Thomson B; Anderson B; Tansley G; Salamonsen R; Fraser JF; Timms D
    Artif Organs; 2016 Sep; 40(9):894-903. PubMed ID: 26748566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Load-independent analysis of a pulsatile right ventricular assist device.
    Meyers CH; Peterseim DS; Uppal R; Jayawant AM; Campbell KA; Sabiston DC; Smith PK; Van Trigt P
    J Heart Lung Transplant; 1995; 14(1 Pt 1):177-85. PubMed ID: 7727467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control strategy for rotary blood pumps.
    Ohuchi K; Kikugawa D; Takahashi K; Uemura M; Nakamura M; Murakami T; Sakamoto T; Takatani S
    Artif Organs; 2001 May; 25(5):366-70. PubMed ID: 11403665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biventricular mechanical support devices--clinical perspectives.
    Shehab S; Newton PJ; Allida SM; Jansz PC; Hayward CS
    Expert Rev Med Devices; 2016; 13(4):353-65. PubMed ID: 26894825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control strategy for maintaining physiological perfusion with rotary blood pumps.
    Giridharan GA; Skliar M
    Artif Organs; 2003 Jul; 27(7):639-48. PubMed ID: 12823419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Flow Sensor-Based Suction-Index Control Strategy for Rotary Left Ventricular Assist Devices.
    Liang L; Qin K; El-Baz AS; Roussel TJ; Sethu P; Giridharan GA; Wang Y
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Sensorless Rotational Speed-Based Control System for Continuous Flow Left Ventricular Assist Devices.
    Meki M; Wang Y; Sethu P; Ghazal M; El-Baz A; Giridharan G
    IEEE Trans Biomed Eng; 2020 Apr; 67(4):1050-1060. PubMed ID: 31329102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotary blood pump control strategy for preventing left ventricular suction.
    Wang Y; Koenig SC; Slaughter MS; Giridharan GA
    ASAIO J; 2015; 61(1):21-30. PubMed ID: 25248043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Durability of left ventricular assist devices: Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) 2006 to 2011.
    Holman WL; Naftel DC; Eckert CE; Kormos RL; Goldstein DJ; Kirklin JK
    J Thorac Cardiovasc Surg; 2013 Aug; 146(2):437-41.e1. PubMed ID: 23490245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro pulsatility analysis of axial-flow and centrifugal-flow left ventricular assist devices.
    Stanfield JR; Selzman CH
    J Biomech Eng; 2013 Mar; 135(3):34505. PubMed ID: 24231821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrocardiogram-synchronized rotational speed change mode in rotary pumps could improve pulsatility.
    Ando M; Nishimura T; Takewa Y; Yamazaki K; Kyo S; Ono M; Tsukiya T; Mizuno T; Taenaka Y; Tatsumi E
    Artif Organs; 2011 Oct; 35(10):941-7. PubMed ID: 21615427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.