These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 17282353)

  • 41. Deep indentation and puncture of a rigid cylinder inserted into a soft solid.
    Barney CW; Chen C; Crosby AJ
    Soft Matter; 2021 Jun; 17(22):5574-5580. PubMed ID: 33982689
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Localized harmonic motion imaging: theory, simulations and experiments.
    Konofagou EE; Hynynen K
    Ultrasound Med Biol; 2003 Oct; 29(10):1405-13. PubMed ID: 14597337
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single-element focused ultrasound transducer method for harmonic motion imaging.
    Maleke C; Pernot M; Konofagou EE
    Ultrason Imaging; 2006 Jul; 28(3):144-58. PubMed ID: 17147056
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A biphasic model for micro-indentation of a hydrogel-based contact lens.
    Chen X; Dunn AC; Sawyer WG; Sarntinoranont M
    J Biomech Eng; 2007 Apr; 129(2):156-63. PubMed ID: 17408320
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechano-acoustic determination of Young's modulus of articular cartilage.
    Saarakkala S; Korhonen RK; Laasanen MS; Töyräs J; Rieppo J; Jurvelin JS
    Biorheology; 2004; 41(3-4):167-79. PubMed ID: 15299250
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A finite element analysis of the indentation stress-relaxation response of linear biphasic articular cartilage.
    Spilker RL; Suh JK; Mow VC
    J Biomech Eng; 1992 May; 114(2):191-201. PubMed ID: 1602762
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The accuracy of ultrasonic indentation in detecting simulated bone displacement: a comparison of three techniques.
    Kawchuk GN; Liddle TR; Fauvel OR; Johnston C
    J Manipulative Physiol Ther; 2006 Feb; 29(2):126-33. PubMed ID: 16461171
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deformation field heterogeneity in punch indentation.
    Murthy TG; Saldana C; Hudspeth M; M'Saoubi R
    Proc Math Phys Eng Sci; 2014 Jun; 470(2166):20130807. PubMed ID: 24910521
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Assessment of elastic parameters of human skin using dynamic elastography.
    Gennisson JL; Baldeweck T; Tanter M; Catheline S; Fink M; Sandrin L; Cornillon C; Querleux B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Aug; 51(8):980-9. PubMed ID: 15346586
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Histotripsy Lesion Formation Using an Ultrasound Imaging Probe Enabled by a Low-Frequency Pump Transducer.
    Lin KW; Hall TL; Xu Z; Cain CA
    Ultrasound Med Biol; 2015 Aug; 41(8):2148-60. PubMed ID: 25929995
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Liver fibrosis assessment using transient elastography guided with real-time B-mode ultrasound imaging: a feasibility study.
    Mak TM; Huang YP; Zheng YP
    Ultrasound Med Biol; 2013 Jun; 39(6):956-66. PubMed ID: 23562022
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultrasound palpation sensor for tissue thickness and elasticity measurement--assessment of transverse carpal ligament.
    Zheng YP; Li ZM; Choi AP; Lu MH; Chen X; Huang QH
    Ultrasonics; 2006 Dec; 44 Suppl 1():e313-7. PubMed ID: 16844164
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultrasonic measurement of depth-dependent transient behaviors of articular cartilage under compression.
    Zheng YP; Niu HJ; Arthur Mak FT; Huang YP
    J Biomech; 2005 Sep; 38(9):1830-7. PubMed ID: 16023470
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High resolution ultrasound elastomicroscopy imaging of soft tissues: system development and feasibility.
    Zheng YP; Bridal SL; Shi J; Saied A; Lu MH; Jaffre B; Mak AF; Laugier P
    Phys Med Biol; 2004 Sep; 49(17):3925-38. PubMed ID: 15470914
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Video-tactile pneumatic sensor for soft tissue elastic modulus estimation.
    Gubenko MM; Morozov AV; Lyubicheva AN; Goryacheva IG; Dosaev MZ; Ju MS; Yeh CH; Su FC
    Biomed Eng Online; 2017 Aug; 16(1):94. PubMed ID: 28764711
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy.
    Stolz M; Raiteri R; Daniels AU; VanLandingham MR; Baschong W; Aebi U
    Biophys J; 2004 May; 86(5):3269-83. PubMed ID: 15111440
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2010 Apr; 37(4):1440-8. PubMed ID: 20443465
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Estimation of Young's modulus and Poisson's ratio of soft tissue from indentation using two different-sized indentors: finite element analysis of the finite deformation effect.
    Choi AP; Zheng YP
    Med Biol Eng Comput; 2005 Mar; 43(2):258-64. PubMed ID: 15865137
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deformation field in indentation of a granular ensemble.
    Murthy TG; Gnanamanickam E; Chandrasekar S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061306. PubMed ID: 23005085
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source.
    Song S; Le NM; Huang Z; Shen T; Wang RK
    Opt Lett; 2015 Nov; 40(21):5007-10. PubMed ID: 26512505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.