These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 17282362)

  • 1. Integrated flexible ocular coil for power and data transfer in retinal prostheses.
    Li W; Rodger D; Weiland J; Humayun M; Tai Y
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2006():1028-31. PubMed ID: 17282362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of thin film Parylene C device curvature and the formation of helices via thermoforming.
    Thielen B; Meng E
    J Micromech Microeng; 2023 Sep; 33(9):095007. PubMed ID: 37520061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Passive, wireless transduction of electrochemical impedance across thin-film microfabricated coils using reflected impedance.
    Baldwin A; Yu L; Pratt M; Scholten K; Meng E
    Biomed Microdevices; 2017 Sep; 19(4):87. PubMed ID: 28948395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optic Nerve Stimulation System with Adaptive Wireless Powering and Data Telemetry.
    Li X; Lu Y; Meng X; Tsui CY; Ki WH
    Micromachines (Basel); 2017 Dec; 8(12):. PubMed ID: 30400557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of toxicity and performance deterioration of parylene-C packaged copper coils using accelerated test.
    Jeong H; Seo JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eyeglasses-powered, contact lens-like platform with high power transfer efficiency.
    Kim YJ; Maeng J; Irazoqui PP
    Biomed Microdevices; 2015 Aug; 17(4):75. PubMed ID: 26149695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new multi-site probe array with monolithically integrated parylene flexible cable for neural prostheses.
    Pang C; Cham J; Nenadic Z; Musallam S; Tai YC; Burdick J; Andersen R
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():7114-7. PubMed ID: 17281915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chip-Scale Coils for Millimeter-Sized Bio-Implants.
    Feng P; Yeon P; Cheng Y; Ghovanloo M; Constandinou TG
    IEEE Trans Biomed Circuits Syst; 2018 Oct; 12(5):1088-1099. PubMed ID: 30040662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technology for 3D System Integration for Flexible Wireless Biomedical Applications.
    Kuo WC; Huang CW
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-Design Method and Wafer-Level Packaging Technique of Thin-Film Flexible Antenna and Silicon CMOS Rectifier Chips for Wireless-Powered Neural Interface Systems.
    Okabe K; Jeewan HP; Yamagiwa S; Kawano T; Ishida M; Akita I
    Sensors (Basel); 2015 Dec; 15(12):31821-32. PubMed ID: 26694407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switchable Polymer Based Thin Film Coils as a Power Module for Wireless Neural Interfaces.
    Kim S; Zoschke K; Klein M; Black D; Buschick K; Toepper M; Tathireddy P; Harrison R; Solzbacher F
    Sens Actuators A Phys; 2007 May; 136(1):467-474. PubMed ID: 18438447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rollable Microfluidic Systems with Microscale Bending Radius and Tuning of Device Function with Reconfigurable 3D Channel Geometry.
    Kim J; You JB; Nam SM; Seo S; Im SG; Lee W
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):11156-11166. PubMed ID: 28267308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an autotuned transcutaneous energy transfer system.
    Miller JA; Bélanger G; Mussivand T
    ASAIO J; 1993; 39(3):M706-10. PubMed ID: 8268629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of system integration and packaging on its inductive power link for an integrated wireless neural interface.
    Kim S; Harrison RR; Solzbacher F
    IEEE Trans Biomed Eng; 2009 Dec; 56(12):2927-36. PubMed ID: 19695994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multicoils-based inductive links dedicated to power up implantable medical devices: modeling, design and experimental results.
    Sawan M; Hashemi S; Sehil M; Awwad F; Hajj-Hassan M; Khouas A
    Biomed Microdevices; 2009 Oct; 11(5):1059-70. PubMed ID: 19488859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully Integrated On-Chip Coil in 0.13 μm CMOS for Wireless Power Transfer Through Biological Media.
    Zargham M; Gulak PG
    IEEE Trans Biomed Circuits Syst; 2015 Apr; 9(2):259-71. PubMed ID: 25099630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro-Fabrication of Components for a High-Density Sub-Retinal Visual Prosthesis.
    Shire DB; Gingerich MD; Wong PI; Skvarla M; Cogan SF; Chen J; Wang W; Rizzo JF
    Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33086504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wireless charing pillow for a fully implantable hearing aid: Design of a circular array coil based on finite element analysis for reducing magnetic weak zones.
    Lim HG; Kim JH; Shin DH; Woo ST; Seong KW; Lee JH; Kim MN; Wei Q; Cho JH
    Biomed Mater Eng; 2015; 26 Suppl 1():S1741-7. PubMed ID: 26405942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanopowder molding method for creating implantable high-aspect-ratio electrodes on thin flexible substrates.
    Hu Z; Zhou DM; Greenberg R; Thundat T
    Biomaterials; 2006 Mar; 27(9):2009-17. PubMed ID: 16310844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature selective deposition of Parylene-C.
    Charlson EM; Charlson EJ; Sabeti R
    IEEE Trans Biomed Eng; 1992 Feb; 39(2):202-6. PubMed ID: 1612624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.