These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 17282678)

  • 1. A crevice bubble growth model for the analysis of decompression sickness.
    Chappell M; Payne S
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():2240-3. PubMed ID: 17282678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A physiological model of gas pockets in crevices and their behavior under compression.
    Chappell MA; Payne SJ
    Respir Physiol Neurobiol; 2006 May; 152(1):100-14. PubMed ID: 16169777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A physiological model of the release of gas bubbles from crevices under decompression.
    Chappell MA; Payne SJ
    Respir Physiol Neurobiol; 2006 Sep; 153(2):166-80. PubMed ID: 16309977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the observations of in vivo bubble formation with hydrophobic crevices.
    Tikuisis P
    Undersea Biomed Res; 1986 Jun; 13(2):165-80. PubMed ID: 3727182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonic monitoring of decompression procedures.
    Daniels S
    Philos Trans R Soc Lond B Biol Sci; 1984 Jan; 304(1118):153-75. PubMed ID: 6142474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the detachment and transport of bubbles from nucleation sites in small vessels.
    Chappell MA; Uzel S; Payne SJ
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):2106-8. PubMed ID: 18018706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decompression induced bubble dynamics on ex vivo fat and muscle tissue surfaces with a new experimental set up.
    Papadopoulou V; Evgenidis S; Eckersley RJ; Mesimeris T; Balestra C; Kostoglou M; Tang MX; Karapantsios TD
    Colloids Surf B Biointerfaces; 2015 May; 129():121-9. PubMed ID: 25835147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A physiological model of the interaction between tissue bubbles and the formation of blood-borne bubbles under decompression.
    Chappell MA; Payne SJ
    Phys Med Biol; 2006 May; 51(9):2321-38. PubMed ID: 16625045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of oxygen and heliox breathing on air bubbles in adipose tissue during 25-kPa altitude exposures.
    Randsøe T; Kvist TM; Hyldegaard O
    J Appl Physiol (1985); 2008 Nov; 105(5):1492-7. PubMed ID: 18756005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of metabolic gases and water vapor, perfluorocarbon emulsions, and nitric oxide on tissue bubbles during decompression sickness.
    Randsøe T
    Dan Med J; 2016 May; 63(5):. PubMed ID: 27127019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of intra-vascular bubbles and the vascular endothelium in decompression sickness.
    Brubakk AO; Møllerløkken A
    Diving Hyperb Med; 2009 Sep; 39(3):162-9. PubMed ID: 22753245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas nuclei, their origin, and their role in bubble formation.
    Blatteau JE; Souraud JB; Gempp E; Boussuges A
    Aviat Space Environ Med; 2006 Oct; 77(10):1068-76. PubMed ID: 17042253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combined three-dimensional
    Walsh C; Stride E; Cheema U; Ovenden N
    J R Soc Interface; 2017 Dec; 14(137):. PubMed ID: 29263127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A critical review of physiological bubble formation in hyperbaric decompression.
    Papadopoulou V; Eckersley RJ; Balestra C; Karapantsios TD; Tang MX
    Adv Colloid Interface Sci; 2013 May; 191-192():22-30. PubMed ID: 23523006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cost-efficient method and device for the study of stationary tissular gas bubble formation in the mechanisms of decompression sickness.
    Blatteau JE; David HN; Vallée N; Meckler C; Demaistre S; Risso JJ; Abraini JH
    J Neurosci Methods; 2014 Oct; 236():40-3. PubMed ID: 25064190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circulatory bubble dynamics: from physical to biological aspects.
    Papadopoulou V; Tang MX; Balestra C; Eckersley RJ; Karapantsios TD
    Adv Colloid Interface Sci; 2014 Apr; 206():239-49. PubMed ID: 24534474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of oxygen breathing and perfluorocarbon emulsion treatment on air bubbles in adipose tissue during decompression sickness.
    Randsoe T; Hyldegaard O
    J Appl Physiol (1985); 2009 Dec; 107(6):1857-63. PubMed ID: 19850729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decompression sickness, fatness and active hydrophobic spots.
    van Ooij PJA
    Diving Hyperb Med; 2018 Sep; 48(3):130-131. PubMed ID: 30199886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Formation of gas bubbles in biological tissues in decompression (a mathematical model)].
    Kisliakov IuIa; Kopyl'tsov AV
    Biofizika; 1985; 30(2):337-40. PubMed ID: 3986237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decompression sickness bubbles: are gas micronuclei formed on a flat hydrophobic surface?
    Arieli R; Marmur A
    Respir Physiol Neurobiol; 2011 Jun; 177(1):19-23. PubMed ID: 21376842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.