These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 17282683)

  • 1. A new approach to investigate wave dissipation in viscoelastic tubes: application of Wave Intensity Analysis.
    Feng J; Khir AW
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():2260-3. PubMed ID: 17282683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wave dissipation in flexible tubes in the time domain: in vitro model of arterial waves.
    Feng J; Long Q; Khir AW
    J Biomech; 2007; 40(10):2130-8. PubMed ID: 17166499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The compression and expansion waves of the forward and backward flows: an in-vitro arterial model.
    Feng J; Khir AW
    Proc Inst Mech Eng H; 2008 May; 222(4):531-42. PubMed ID: 18595362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using wave intensity analysis to determine local reflection coefficient in flexible tubes.
    Li Y; Parker KH; Khir AW
    J Biomech; 2016 Sep; 49(13):2709-2717. PubMed ID: 27370783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurements of wave speed and reflected waves in elastic tubes and bifurcations.
    Khir AW; Parker KH
    J Biomech; 2002 Jun; 35(6):775-83. PubMed ID: 12020997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The speed, reflection and intensity of waves propagating in flexible tubes with aneurysm and stenosis: Experimental investigation.
    Hacham WS; Khir AW
    Proc Inst Mech Eng H; 2019 Oct; 233(10):979-988. PubMed ID: 31291847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental study on the pressure and pulse wave propagation in viscoelastic vessel tubes-effects of liquid viscosity and tube stiffness.
    Ikenaga Y; Nishi S; Komagata Y; Saito M; Lagrée PY; Asada T; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2381-8. PubMed ID: 24158293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wave intensity analysis in air-filled flexible vessels.
    Clavica F; Parker KH; Khir AW
    J Biomech; 2015 Feb; 48(4):687-694. PubMed ID: 25595424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological relevance of uniform elastic tube-models to infer descending aortic wave reflection: a problem of identifiability.
    Burattini R; Campbell KB
    Ann Biomed Eng; 2000 May; 28(5):512-23. PubMed ID: 10925949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wave intensity analysis of left ventricular filling.
    Lanoye LL; Vierendeels JA; Segers P; Verdonck PR
    J Biomech Eng; 2005 Oct; 127(5):862-7. PubMed ID: 16248317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results.
    Saito M; Ikenaga Y; Matsukawa M; Watanabe Y; Asada T; Lagrée PY
    J Biomech Eng; 2011 Dec; 133(12):121005. PubMed ID: 22206422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissipation in peristaltic pumping of a compressible viscous fluid through a planar duct or a circular tube.
    Felderhof BU
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046310. PubMed ID: 21599298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competing effects of particle and medium inertia on particle diffusion in viscoelastic materials, and their ramifications for passive microrheology.
    Indei T; Schieber JD; Córdoba A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041504. PubMed ID: 22680480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of oscillatory flow pressure gradient in an elastic artery model.
    Cohen MI; Wang DM; Tarbell JM
    Biorheology; 1995; 32(4):459-71. PubMed ID: 7579210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aldosterone receptor inhibition alters the viscoelastic biomechanical behavior of the aortic wall.
    Gkizas SI; Apostolakis E; Pagoulatou E; Mavrilas D; Papachristou DJ; Koletsis E; Papalois A; Papadaki H; Alexopoulos D
    Exp Biol Med (Maywood); 2010 Mar; 235(3):311-6. PubMed ID: 20404048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An experimental comparison of different methods of measuring wave propagation in viscoelastic tubes.
    Ursino M; Artioli E; Gallerani M
    J Biomech; 1994 Jul; 27(7):979-90. PubMed ID: 8063848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of wave reflections in the arterial system using wave intensity: a novel method for predicting the timing and amplitude of reflected waves.
    Koh TW; Pepper JR; DeSouza AC; Parker KH
    Heart Vessels; 1998; 13(3):103-13. PubMed ID: 10328180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation of sinusoidal flow in a straight elastic tube: effects of phase angles.
    Dutta A; Tarbell JM
    Biorheology; 1989; 26(1):1-22. PubMed ID: 2804271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulse wave attenuation measurement by linear and nonlinear methods in nonlinearly elastic tubes.
    Bertram CD; Pythoud F; Stergiopulos N; Meister JJ
    Med Eng Phys; 1999 Apr; 21(3):155-66. PubMed ID: 10468357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometric effects on stress wave propagation.
    Johnson KL; Trim MW; Horstemeyer MF; Lee N; Williams LN; Liao J; Rhee H; Prabhu R
    J Biomech Eng; 2014 Feb; 136(2):021023. PubMed ID: 24362893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.