BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 17282911)

  • 1. A method for measurement of water temperature in micro-region using near infrared light.
    Kakuta N; Li F; Yamada Y
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():3145-8. PubMed ID: 17282911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of Temperature Differences between Micro-regions in Water Using Near-Infrared Spectroscopy.
    Kakuta N; Ozaki A; Li F; Arimoto H; Yamada Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4564-7. PubMed ID: 18003021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ measurement of micro flow rate using near infrared absorption method.
    Lee SH; Lee J; Chun S; Kang W
    Opt Express; 2018 Jun; 26(13):17078-17091. PubMed ID: 30119525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity.
    Pegau WS; Gray D; Zaneveld JR
    Appl Opt; 1997 Aug; 36(24):6035-46. PubMed ID: 18259448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature measurement of aqueous solution in miniature sample chamber in microscopic system based on near-infrared spectrum.
    Li M; Sun Y; Yang X; Ke Z; Zhou J; Liang Z; Zhang S
    Rev Sci Instrum; 2022 Dec; 93(12):123701. PubMed ID: 36586931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature measurements of turbid aqueous solutions using near-infrared spectroscopy.
    Kakuta N; Arimoto H; Momoki H; Li F; Yamada Y
    Appl Opt; 2008 May; 47(13):2227-33. PubMed ID: 18449286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature Dependence of Optical Constants for Chinese Liquid Hydrocarbon Fuels in the Near-Infrared (NIR) Region from Room Temperature to 400 K.
    Ai Q; Liu M; Sun C; Xia X
    Appl Spectrosc; 2017 Aug; 71(8):2026-2033. PubMed ID: 28374602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of temperature on water and aqueous glucose absorption spectra in the near- and mid-infrared regions at physiologically relevant temperatures.
    Jensen PS; Bak J; Andersson-Engels S
    Appl Spectrosc; 2003 Jan; 57(1):28-36. PubMed ID: 14610933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-contact skin moisture measurement based on near-infrared spectroscopy.
    Arimoto H; Egawa M
    Appl Spectrosc; 2004 Dec; 58(12):1439-46. PubMed ID: 15606957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A reference-wavelength-based method for improved analysis of near-infrared spectroscopy.
    Chen Y; Chen W; Shi Z; Yang Y; Xu K
    Appl Spectrosc; 2009 May; 63(5):544-8. PubMed ID: 19470211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of water content in skin by using a FT near infrared spectrometer.
    Suh EJ; Woo YA; Kim HJ
    Arch Pharm Res; 2005 Apr; 28(4):458-62. PubMed ID: 15918520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NIR sensor for aqueous urea solution film thickness and concentration measurement using a broadband light source.
    Lubnow M; Dreier T; Schulz C
    Appl Opt; 2019 Jun; 58(16):4546-4552. PubMed ID: 31251270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of ethylene content in melt-state random and block polypropylene by near-infrared spectroscopy and chemometrics: influence of a change in sample temperature and its compensation method.
    Watari M; Ozaki Y
    Appl Spectrosc; 2005 May; 59(5):600-10. PubMed ID: 15969805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study of high temperature water vapor concentration measurement method based on absorption spectroscopy].
    Chen JY; Liu JG; He JF; He YB; Zhang GL; Xu ZY; Gang Q; Wang L; Yao L; Yuan S; Ruan J; Dai YH; Kan RF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Dec; 34(12):3174-7. PubMed ID: 25881402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of absorption and spreading of moisturizer on the microscopic region of the skin surface with near-infrared imaging.
    Arimoto H; Yanai M; Egawa M
    Skin Res Technol; 2016 Nov; 22(4):505-512. PubMed ID: 27334342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative determination by temperature dependent near-infrared spectra.
    Shao X; Kang J; Cai W
    Talanta; 2010 Aug; 82(3):1017-21. PubMed ID: 20678661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Kinetic models for determination of yeast in fresh jujube using near infrared spectroscopy].
    Hu YH; Liu C; He Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Apr; 34(4):922-6. PubMed ID: 25007601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-Dependent Infrared Refractive Index of Polymers from a Calibrated Attenuated Total Reflection Infrared Measurement.
    Azam MS; Ranson MD; Hore DK
    Appl Spectrosc; 2022 Oct; 76(10):1254-1262. PubMed ID: 35354313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water can be a probe for sensing glucose in aqueous solutions by temperature dependent near infrared spectra.
    Cui X; Liu X; Yu X; Cai W; Shao X
    Anal Chim Acta; 2017 Mar; 957():47-54. PubMed ID: 28107833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region.
    Röttgers R; McKee D; Utschig C
    Opt Express; 2014 Oct; 22(21):25093-108. PubMed ID: 25401542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.