These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 17282918)

  • 1. Aberration estimation from single point image in a simulated adaptive optics system.
    Grisan E; Frassetto F; Da Deppo V; Naletto G; Ruggeri A
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():3173-6. PubMed ID: 17282918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. No wavefront sensor adaptive optics system for compensation of primary aberrations by software analysis of a point source image. 1. Methods.
    Grisan E; Frassetto F; Da Deppo V; Naletto G; Ruggeri A
    Appl Opt; 2007 Sep; 46(25):6434-41. PubMed ID: 17805384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning-based lens wavefront aberration recovery.
    Chen L; Hu Y; Nie J; Xue T; Gu J
    Opt Express; 2024 May; 32(11):18931-18943. PubMed ID: 38859039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Closed-loop adaptive optics using a spatial light modulator for sensing and compensating of optical aberrations in ophthalmic applications.
    Akondi V; Jewel MA; Vohnsen B
    J Biomed Opt; 2014 Sep; 19(9):96014. PubMed ID: 25253296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iterative framework for a high accuracy aberration estimation with one-shot wavefront sensing.
    Yang S; Li X
    Opt Express; 2022 Oct; 30(21):37874-37887. PubMed ID: 36258367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model-based aberration correction in a closed-loop wavefront-sensor-less adaptive optics system.
    Song H; Fraanje R; Schitter G; Kroese H; Vdovin G; Verhaegen M
    Opt Express; 2010 Nov; 18(23):24070-84. PubMed ID: 21164754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative comparison of different-shaped wavefront sensors and preliminary results for defocus aberrations on a mechanical eye.
    Carvalho LA; Chamon W; Schor P; Castro JC
    Arq Bras Oftalmol; 2006; 69(2):239-47. PubMed ID: 16699677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a global algorithm for wavefront reconstruction for Shack-Hartmann wave-front sensors and thick fundus reflectors.
    Liu T; Thibos L; Marin G; Hernandez M
    Ophthalmic Physiol Opt; 2014 Jan; 34(1):63-72. PubMed ID: 24325435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated fast computational adaptive optics for optical coherence tomography based on a stochastic parallel gradient descent algorithm.
    Zhu D; Wang R; Žurauskas M; Pande P; Bi J; Yuan Q; Wang L; Gao Z; Boppart SA
    Opt Express; 2020 Aug; 28(16):23306-23319. PubMed ID: 32752329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses.
    Lima NC; Mishra K; Mugele F
    Opt Express; 2017 Mar; 25(6):6700-6711. PubMed ID: 28381014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aberrations of the human eye in visible and near infrared illumination.
    Llorente L; Diaz-Santana L; Lara-Saucedo D; Marcos S
    Optom Vis Sci; 2003 Jan; 80(1):26-35. PubMed ID: 12553541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling human eye aberrations and their compensation for high-resolution retinal imaging.
    Zhu L; Bartsch DU; Freeman WR; Sun PC; Fainman Y
    Optom Vis Sci; 1998 Nov; 75(11):827-39. PubMed ID: 9848838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zernike coefficients from wavefront curvature data.
    Mahajan VN; Acosta E
    Appl Opt; 2020 Aug; 59(22):G120-G128. PubMed ID: 32749324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Quantitative assessment of quality of vision].
    Oshika T
    Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):770-807; discussion 808. PubMed ID: 15656087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modal-based phase retrieval for adaptive optics.
    Antonello J; Verhaegen M
    J Opt Soc Am A Opt Image Sci Vis; 2015 Jun; 32(6):1160-70. PubMed ID: 26367051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of just-noticeable differences for refractive errors and spherical aberration using visual simulation.
    Legras R; Chateau N; Charman WN
    Optom Vis Sci; 2004 Sep; 81(9):718-28. PubMed ID: 15365392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNN-based aberration correction in a wavefront sensorless adaptive optics system.
    Tian Q; Lu C; Liu B; Zhu L; Pan X; Zhang Q; Yang L; Tian F; Xin X
    Opt Express; 2019 Apr; 27(8):10765-10776. PubMed ID: 31052929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From corneal shape to ocular wavefront in eyes with aspheric IOLs: the feasibility of IOL customisation.
    de Jong T; Canovas C; Weeber H; Jansonius NM
    Ophthalmic Physiol Opt; 2016 Jan; 36(1):43-50. PubMed ID: 26489033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase modulators with tunability in wavefronts and optical axes originating from anisotropic molecular tilts under symmetric electric field II: experiments.
    Wang YJ; Lin YH; Cakmakci O; Reshetnyak V
    Opt Express; 2020 Mar; 28(6):8985-9001. PubMed ID: 32225513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracting wavefront error from Shack-Hartmann images using spatial demodulation.
    Sarver EJ; Schwiegerling J; Applegate RA
    J Refract Surg; 2006 Nov; 22(9):949-53. PubMed ID: 17124895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.