These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 17282918)

  • 41. Numerical analysis of wavefront aberration correction using multielectrode electrowetting-based devices.
    Zohrabi M; Cormack RH; Mccullough C; Supekar OD; Gibson EA; Bright VM; Gopinath JT
    Opt Express; 2017 Dec; 25(25):31451-31461. PubMed ID: 29245820
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wavefront-coding technique for inexpensive and robust retinal imaging.
    Arines J; Hernandez RO; Sinzinger S; Grewe A; Acosta E
    Opt Lett; 2014 Jul; 39(13):3986-8. PubMed ID: 24978788
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Measurement and prediction of subjective gradations of images in presence of monochromatic aberrations.
    Legras R; Benard Y
    Vision Res; 2013 Jun; 86():52-8. PubMed ID: 23624229
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of aberrations and scatter on image resolution assessed by adaptive optics retinal section imaging.
    Wanek JM; Mori M; Shahidi M
    J Opt Soc Am A Opt Image Sci Vis; 2007 May; 24(5):1296-304. PubMed ID: 17429475
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fully refractive adaptive optics fluorescence microscope using an optofluidic wavefront modulator.
    Rajaeipour P; Dorn A; Banerjee K; Zappe H; Ataman Ç
    Opt Express; 2020 Mar; 28(7):9944-9956. PubMed ID: 32225593
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Image metrics for predicting subjective image quality.
    Chen L; Singer B; Guirao A; Porter J; Williams DR
    Optom Vis Sci; 2005 May; 82(5):358-69. PubMed ID: 15894912
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [The Aberration Corrected Grating Spectrometer Based on Adaptive Optics].
    Zheng LH; Rao CH; Gu NT; Qiu Q
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Dec; 36(12):4088-93. PubMed ID: 30256580
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Adaptive optics for dynamic aberration compensation using parallel model-based controllers based on a field programmable gate array.
    Wu YC; Chang JC; Chang CY
    Opt Express; 2021 Jul; 29(14):21129-21142. PubMed ID: 34265906
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions.
    Villegas EA; Artal P
    Optom Vis Sci; 2003 Feb; 80(2):106-14. PubMed ID: 12597325
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Theoretical model of the contributions of corneal asphericity and anterior chamber depth to peripheral wavefront aberrations.
    He JC
    Ophthalmic Physiol Opt; 2014 May; 34(3):321-30. PubMed ID: 24754429
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of photorefractive keratectomy and cataract surgery on ocular optical errors of higher order.
    Mierdel P; Kaemmerer M; Krinke HE; Seiler T
    Graefes Arch Clin Exp Ophthalmol; 1999 Sep; 237(9):725-9. PubMed ID: 10447646
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Induced Higher-order aberrations after Laser In Situ Keratomileusis (LASIK) Performed with Wavefront-Guided IntraLase Femtosecond Laser in moderate to high Astigmatism.
    Al-Zeraid FM; Osuagwu UL
    BMC Ophthalmol; 2016 Mar; 16():29. PubMed ID: 27000109
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Use of adaptive optics to determine the optimal ocular spherical aberration.
    Piers PA; Manzanera S; Prieto PM; Gorceix N; Artal P
    J Cataract Refract Surg; 2007 Oct; 33(10):1721-6. PubMed ID: 17889766
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adaptive aberration correction in a confocal microscope.
    Booth MJ; Neil MA; Juskaitis R; Wilson T
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):5788-92. PubMed ID: 11959908
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adaptive optics with a programmable phase modulator: applications in the human eye.
    Prieto P; Fernández E; Manzanera S; Artal P
    Opt Express; 2004 Aug; 12(17):4059-71. PubMed ID: 19483947
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Customized aspheric intraocular lenses calculated with real ray tracing.
    Einighammer J; Oltrup T; Feudner E; Bende T; Jean B
    J Cataract Refract Surg; 2009 Nov; 35(11):1984-94. PubMed ID: 19878833
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Simulation of specimen-induced aberrations for objects with spherical and cylindrical symmetry.
    Schwertner M; Booth MJ; Wilson T
    J Microsc; 2004 Sep; 215(Pt 3):271-80. PubMed ID: 15312192
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Head-mounted adaptive optics visual simulator.
    Soomro SR; Sager S; Paniagua-Diaz AM; Prieto PM; Artal P
    Biomed Opt Express; 2024 Feb; 15(2):608-623. PubMed ID: 38404335
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of Seidel aberration by use of the discrete wavelet transform.
    Chang RS; Sheu JY; Lin CH
    Appl Opt; 2002 May; 41(13):2408-13. PubMed ID: 12009149
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nonlinear ray tracing in focused fields, part 3. Monochromatic wavefront aberration: tutorial.
    Yu Q; Hennelly BM
    J Opt Soc Am A Opt Image Sci Vis; 2024 May; 41(5):920-931. PubMed ID: 38856578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.