BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 17282991)

  • 1. Regulatory pathways linking progenitor patterning, cell fates and neurogenesis in the ventral neural tube.
    Briscoe J; Novitch BG
    Philos Trans R Soc Lond B Biol Sci; 2008 Jan; 363(1489):57-70. PubMed ID: 17282991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specification of neuronal fates in the ventral neural tube.
    Briscoe J; Ericson J
    Curr Opin Neurobiol; 2001 Feb; 11(1):43-9. PubMed ID: 11179871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detailed expression analysis of regulatory genes in the early developing human neural tube.
    Marklund U; Alekseenko Z; Andersson E; Falci S; Westgren M; Perlmann T; Graham A; Sundström E; Ericson J
    Stem Cells Dev; 2014 Jan; 23(1):5-15. PubMed ID: 24007338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pax3- and Pax7-mediated Dbx1 regulation orchestrates the patterning of intermediate spinal interneurons.
    Gard C; Gonzalez Curto G; Frarma YE; Chollet E; Duval N; Auzié V; Auradé F; Vigier L; Relaix F; Pierani A; Causeret F; Ribes V
    Dev Biol; 2017 Dec; 432(1):24-33. PubMed ID: 28625870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From signalling to form: the coordination of neural tube patterning.
    Frith TJR; Briscoe J; Boezio GLM
    Curr Top Dev Biol; 2024; 159():168-231. PubMed ID: 38729676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Otx2 regulates the extent, identity and fate of neuronal progenitor domains in the ventral midbrain.
    Puelles E; Annino A; Tuorto F; Usiello A; Acampora D; Czerny T; Brodski C; Ang SL; Wurst W; Simeone A
    Development; 2004 May; 131(9):2037-48. PubMed ID: 15105370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A direct requirement for Hedgehog signaling for normal specification of all ventral progenitor domains in the presumptive mammalian spinal cord.
    Wijgerde M; McMahon JA; Rule M; McMahon AP
    Genes Dev; 2002 Nov; 16(22):2849-64. PubMed ID: 12435628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Playing with the cell cycle to build the spinal cord.
    Molina A; Pituello F
    Dev Biol; 2017 Dec; 432(1):14-23. PubMed ID: 28034699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A direct fate exclusion mechanism by Sonic hedgehog-regulated transcriptional repressors.
    Nishi Y; Zhang X; Jeong J; Peterson KA; Vedenko A; Bulyk ML; Hide WA; McMahon AP
    Development; 2015 Oct; 142(19):3286-93. PubMed ID: 26293298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Playing Well with Others: Extrinsic Cues Regulate Neural Progenitor Temporal Identity to Generate Neuronal Diversity.
    Syed MH; Mark B; Doe CQ
    Trends Genet; 2017 Dec; 33(12):933-942. PubMed ID: 28899597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SoxB1 transcription factors and Notch signaling use distinct mechanisms to regulate proneural gene function and neural progenitor differentiation.
    Holmberg J; Hansson E; Malewicz M; Sandberg M; Perlmann T; Lendahl U; Muhr J
    Development; 2008 May; 135(10):1843-51. PubMed ID: 18417619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium.
    Guerrero P; Perez-Carrasco R; Zagorski M; Page D; Kicheva A; Briscoe J; Page KM
    Development; 2019 Dec; 146(23):. PubMed ID: 31784457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. YAP regulates neural progenitor cell number via the TEA domain transcription factor.
    Cao X; Pfaff SL; Gage FH
    Genes Dev; 2008 Dec; 22(23):3320-34. PubMed ID: 19015275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adult neural stem cells and repair of the adult central nervous system.
    Goh EL; Ma D; Ming GL; Song H
    J Hematother Stem Cell Res; 2003 Dec; 12(6):671-9. PubMed ID: 14977476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forcing neural progenitor cells to cycle is insufficient to alter cell-fate decision and timing of neuronal differentiation in the spinal cord.
    Lobjois V; Bel-Vialar S; Trousse F; Pituello F
    Neural Dev; 2008 Feb; 3():4. PubMed ID: 18271960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-cell transcriptome profiling of the human developing spinal cord reveals a conserved genetic programme with human-specific features.
    Rayon T; Maizels RJ; Barrington C; Briscoe J
    Development; 2021 Aug; 148(15):. PubMed ID: 34351410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity and pattern in the developing spinal cord.
    Tanabe Y; Jessell TM
    Science; 1996 Nov; 274(5290):1115-23. PubMed ID: 8895454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycosignaling in neural stem cells: involvement of glycoconjugates in signal transduction modulating the neural stem cell fate.
    Yu RK; Yanagisawa M
    J Neurochem; 2007 Nov; 103 Suppl 1():39-46. PubMed ID: 17986138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specification of dorsal spinal cord interneurons.
    Helms AW; Johnson JE
    Curr Opin Neurobiol; 2003 Feb; 13(1):42-9. PubMed ID: 12593981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cux2 (Cutl2) integrates neural progenitor development with cell-cycle progression during spinal cord neurogenesis.
    Iulianella A; Sharma M; Durnin M; Vanden Heuvel GB; Trainor PA
    Development; 2008 Feb; 135(4):729-41. PubMed ID: 18223201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.