These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17282998)

  • 1. NetPhosYeast: prediction of protein phosphorylation sites in yeast.
    Ingrell CR; Miller ML; Jensen ON; Blom N
    Bioinformatics; 2007 Apr; 23(7):895-7. PubMed ID: 17282998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A neural-network-based method for predicting protein stability changes upon single point mutations.
    Capriotti E; Fariselli P; Casadio R
    Bioinformatics; 2004 Aug; 20 Suppl 1():i63-8. PubMed ID: 15262782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers.
    Lundegaard C; Lund O; Nielsen M
    Bioinformatics; 2008 Jun; 24(11):1397-8. PubMed ID: 18413329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites.
    Blom N; Gammeltoft S; Brunak S
    J Mol Biol; 1999 Dec; 294(5):1351-62. PubMed ID: 10600390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CASVM: web server for SVM-based prediction of caspase substrates cleavage sites.
    Wee LJ; Tan TW; Ranganathan S
    Bioinformatics; 2007 Dec; 23(23):3241-3. PubMed ID: 17599937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Why neural networks should not be used for HIV-1 protease cleavage site prediction.
    Rögnvaldsson T; You L
    Bioinformatics; 2004 Jul; 20(11):1702-9. PubMed ID: 14988129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly specific prediction of phosphorylation sites in proteins.
    Koenig M; Grabe N
    Bioinformatics; 2004 Dec; 20(18):3620-7. PubMed ID: 15297298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar.
    Viklund H; Elofsson A
    Bioinformatics; 2008 Aug; 24(15):1662-8. PubMed ID: 18474507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure.
    Song J; Yuan Z; Tan H; Huber T; Burrage K
    Bioinformatics; 2007 Dec; 23(23):3147-54. PubMed ID: 17942444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein functional sites prediction using modified bio-basis function and quantitative indices.
    Maji P; Das C
    IEEE Trans Nanobioscience; 2010 Dec; 9(4):250-7. PubMed ID: 21266311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites.
    Emanuelsson O; Nielsen H; von Heijne G
    Protein Sci; 1999 May; 8(5):978-84. PubMed ID: 10338008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neural network method for prediction of beta-turn types in proteins using evolutionary information.
    Kaur H; Raghava GP
    Bioinformatics; 2004 Nov; 20(16):2751-8. PubMed ID: 15145798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks.
    Blom N; Hansen J; Blaas D; Brunak S
    Protein Sci; 1996 Nov; 5(11):2203-16. PubMed ID: 8931139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis and prediction of mammalian protein glycation.
    Johansen MB; Kiemer L; Brunak S
    Glycobiology; 2006 Sep; 16(9):844-53. PubMed ID: 16762979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GPS: a novel group-based phosphorylation predicting and scoring method.
    Zhou FF; Xue Y; Chen GL; Yao X
    Biochem Biophys Res Commun; 2004 Dec; 325(4):1443-8. PubMed ID: 15555589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of putative domain linkers by a neural network - application to a large sequence database.
    Miyazaki S; Kuroda Y; Yokoyama S
    BMC Bioinformatics; 2006 Jun; 7():323. PubMed ID: 16800897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GANNPhos: a new phosphorylation site predictor based on a genetic algorithm integrated neural network.
    Tang YR; Chen YZ; Canchaya CA; Zhang Z
    Protein Eng Des Sel; 2007 Aug; 20(8):405-12. PubMed ID: 17652129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites.
    Huang HD; Lee TY; Tzeng SW; Horng JT
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W226-9. PubMed ID: 15980458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NetAcet: prediction of N-terminal acetylation sites.
    Kiemer L; Bendtsen JD; Blom N
    Bioinformatics; 2005 Apr; 21(7):1269-70. PubMed ID: 15539450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved functional prediction of proteins by learning kernel combinations in multilabel settings.
    Roth V; Fischer B
    BMC Bioinformatics; 2007 May; 8 Suppl 2(Suppl 2):S12. PubMed ID: 17493250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.