These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 17283436)
1. Detection of gene x gene interactions in genome-wide association studies of human population data. Musani SK; Shriner D; Liu N; Feng R; Coffey CS; Yi N; Tiwari HK; Allison DB Hum Hered; 2007; 63(2):67-84. PubMed ID: 17283436 [TBL] [Abstract][Full Text] [Related]
2. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies. Yang C; He Z; Wan X; Yang Q; Xue H; Yu W Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029 [TBL] [Abstract][Full Text] [Related]
3. Comparison of approaches for machine-learning optimization of neural networks for detecting gene-gene interactions in genetic epidemiology. Motsinger-Reif AA; Dudek SM; Hahn LW; Ritchie MD Genet Epidemiol; 2008 May; 32(4):325-40. PubMed ID: 18265411 [TBL] [Abstract][Full Text] [Related]
4. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. Moore JH; Gilbert JC; Tsai CT; Chiang FT; Holden T; Barney N; White BC J Theor Biol; 2006 Jul; 241(2):252-61. PubMed ID: 16457852 [TBL] [Abstract][Full Text] [Related]
5. Predictive rule inference for epistatic interaction detection in genome-wide association studies. Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W Bioinformatics; 2010 Jan; 26(1):30-7. PubMed ID: 19880365 [TBL] [Abstract][Full Text] [Related]
6. Detecting interactions in association studies by using simple allele recoding. Sillanpää MJ Hum Hered; 2009; 67(1):69-75. PubMed ID: 18931512 [TBL] [Abstract][Full Text] [Related]
7. Computational intelligence in bioinformatics: SNP/haplotype data in genetic association study for common diseases. Kelemen A; Vasilakos AV; Liang Y IEEE Trans Inf Technol Biomed; 2009 Sep; 13(5):841-7. PubMed ID: 19556205 [TBL] [Abstract][Full Text] [Related]
8. Detecting AIDS restriction genes: from candidate genes to genome-wide association discovery. Hutcheson HB; Lautenberger JA; Nelson GW; Pontius JU; Kessing BD; Winkler CA; Smith MW; Johnson R; Stephens R; Phair J; Goedert JJ; Donfield S; O'Brien SJ Vaccine; 2008 Jun; 26(24):2951-65. PubMed ID: 18325640 [TBL] [Abstract][Full Text] [Related]
9. Singleton SNPs in the human genome and implications for genome-wide association studies. Ke X; Taylor MS; Cardon LR Eur J Hum Genet; 2008 Apr; 16(4):506-15. PubMed ID: 18197193 [TBL] [Abstract][Full Text] [Related]
10. Common statistical issues in genome-wide association studies: a review on power, data quality control, genotype calling and population structure. Teo YY Curr Opin Lipidol; 2008 Apr; 19(2):133-43. PubMed ID: 18388693 [TBL] [Abstract][Full Text] [Related]
11. Biostatistical aspects of genome-wide association studies. Ziegler A; König IR; Thompson JR Biom J; 2008 Feb; 50(1):8-28. PubMed ID: 18217698 [TBL] [Abstract][Full Text] [Related]
12. Strategy for detecting susceptibility genes with weak or no marginal effect. Kotti S; Bickeboller H; Clerget-Darpoux F Hum Hered; 2007; 63(2):85-92. PubMed ID: 17283437 [TBL] [Abstract][Full Text] [Related]
13. Evaluating the ability of tree-based methods and logistic regression for the detection of SNP-SNP interaction. García-Magariños M; López-de-Ullibarri I; Cao R; Salas A Ann Hum Genet; 2009 May; 73(Pt 3):360-9. PubMed ID: 19291098 [TBL] [Abstract][Full Text] [Related]
14. The evolution of signaling complexity suggests a mechanism for reducing the genomic search space in human association studies. Irizarry KJ; Merriman B; Bahamonde ME; Wong ML; Licinio J Mol Psychiatry; 2005 Jan; 10(1):14-26. PubMed ID: 15618953 [TBL] [Abstract][Full Text] [Related]
15. Universal false discovery rate estimation methodology for genome-wide association studies. Forner K; Lamarine M; Guedj M; Dauvillier J; Wojcik J Hum Hered; 2008; 65(4):183-94. PubMed ID: 18073488 [TBL] [Abstract][Full Text] [Related]
16. Personal genomes: The case of the missing heritability. Maher B Nature; 2008 Nov; 456(7218):18-21. PubMed ID: 18987709 [No Abstract] [Full Text] [Related]
17. Association analysis of the glutamic acid decarboxylase 2 and the glutamine synthetase genes (GAD2, GLUL) with schizophrenia. Arai S; Shibata H; Sakai M; Ninomiya H; Iwata N; Ozaki N; Fukumaki Y Psychiatr Genet; 2009 Feb; 19(1):6-13. PubMed ID: 19125103 [TBL] [Abstract][Full Text] [Related]
18. A comparison of analytical methods for genetic association studies. Motsinger-Reif AA; Reif DM; Fanelli TJ; Ritchie MD Genet Epidemiol; 2008 Dec; 32(8):767-78. PubMed ID: 18561203 [TBL] [Abstract][Full Text] [Related]
19. Bayesian inference of epistatic interactions in case-control studies. Zhang Y; Liu JS Nat Genet; 2007 Sep; 39(9):1167-73. PubMed ID: 17721534 [TBL] [Abstract][Full Text] [Related]
20. Effects of single SNPs, haplotypes, and whole-genome LD maps on accuracy of association mapping. Maniatis N; Collins A; Morton NE Genet Epidemiol; 2007 Apr; 31(3):179-88. PubMed ID: 17285621 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]