BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 17283436)

  • 1. Detection of gene x gene interactions in genome-wide association studies of human population data.
    Musani SK; Shriner D; Liu N; Feng R; Coffey CS; Yi N; Tiwari HK; Allison DB
    Hum Hered; 2007; 63(2):67-84. PubMed ID: 17283436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies.
    Yang C; He Z; Wan X; Yang Q; Xue H; Yu W
    Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of approaches for machine-learning optimization of neural networks for detecting gene-gene interactions in genetic epidemiology.
    Motsinger-Reif AA; Dudek SM; Hahn LW; Ritchie MD
    Genet Epidemiol; 2008 May; 32(4):325-40. PubMed ID: 18265411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility.
    Moore JH; Gilbert JC; Tsai CT; Chiang FT; Holden T; Barney N; White BC
    J Theor Biol; 2006 Jul; 241(2):252-61. PubMed ID: 16457852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictive rule inference for epistatic interaction detection in genome-wide association studies.
    Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W
    Bioinformatics; 2010 Jan; 26(1):30-7. PubMed ID: 19880365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting interactions in association studies by using simple allele recoding.
    Sillanpää MJ
    Hum Hered; 2009; 67(1):69-75. PubMed ID: 18931512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational intelligence in bioinformatics: SNP/haplotype data in genetic association study for common diseases.
    Kelemen A; Vasilakos AV; Liang Y
    IEEE Trans Inf Technol Biomed; 2009 Sep; 13(5):841-7. PubMed ID: 19556205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting AIDS restriction genes: from candidate genes to genome-wide association discovery.
    Hutcheson HB; Lautenberger JA; Nelson GW; Pontius JU; Kessing BD; Winkler CA; Smith MW; Johnson R; Stephens R; Phair J; Goedert JJ; Donfield S; O'Brien SJ
    Vaccine; 2008 Jun; 26(24):2951-65. PubMed ID: 18325640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Singleton SNPs in the human genome and implications for genome-wide association studies.
    Ke X; Taylor MS; Cardon LR
    Eur J Hum Genet; 2008 Apr; 16(4):506-15. PubMed ID: 18197193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Common statistical issues in genome-wide association studies: a review on power, data quality control, genotype calling and population structure.
    Teo YY
    Curr Opin Lipidol; 2008 Apr; 19(2):133-43. PubMed ID: 18388693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biostatistical aspects of genome-wide association studies.
    Ziegler A; König IR; Thompson JR
    Biom J; 2008 Feb; 50(1):8-28. PubMed ID: 18217698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategy for detecting susceptibility genes with weak or no marginal effect.
    Kotti S; Bickeboller H; Clerget-Darpoux F
    Hum Hered; 2007; 63(2):85-92. PubMed ID: 17283437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the ability of tree-based methods and logistic regression for the detection of SNP-SNP interaction.
    García-Magariños M; López-de-Ullibarri I; Cao R; Salas A
    Ann Hum Genet; 2009 May; 73(Pt 3):360-9. PubMed ID: 19291098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolution of signaling complexity suggests a mechanism for reducing the genomic search space in human association studies.
    Irizarry KJ; Merriman B; Bahamonde ME; Wong ML; Licinio J
    Mol Psychiatry; 2005 Jan; 10(1):14-26. PubMed ID: 15618953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Universal false discovery rate estimation methodology for genome-wide association studies.
    Forner K; Lamarine M; Guedj M; Dauvillier J; Wojcik J
    Hum Hered; 2008; 65(4):183-94. PubMed ID: 18073488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Personal genomes: The case of the missing heritability.
    Maher B
    Nature; 2008 Nov; 456(7218):18-21. PubMed ID: 18987709
    [No Abstract]   [Full Text] [Related]  

  • 17. Association analysis of the glutamic acid decarboxylase 2 and the glutamine synthetase genes (GAD2, GLUL) with schizophrenia.
    Arai S; Shibata H; Sakai M; Ninomiya H; Iwata N; Ozaki N; Fukumaki Y
    Psychiatr Genet; 2009 Feb; 19(1):6-13. PubMed ID: 19125103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of analytical methods for genetic association studies.
    Motsinger-Reif AA; Reif DM; Fanelli TJ; Ritchie MD
    Genet Epidemiol; 2008 Dec; 32(8):767-78. PubMed ID: 18561203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian inference of epistatic interactions in case-control studies.
    Zhang Y; Liu JS
    Nat Genet; 2007 Sep; 39(9):1167-73. PubMed ID: 17721534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of single SNPs, haplotypes, and whole-genome LD maps on accuracy of association mapping.
    Maniatis N; Collins A; Morton NE
    Genet Epidemiol; 2007 Apr; 31(3):179-88. PubMed ID: 17285621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.