These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 17283944)

  • 1. Solvent release into a sandy aquifer 3: enhanced dissolution by methanol injection.
    Broholm K
    Environ Technol; 2007 Jan; 28(1):11-8. PubMed ID: 17283944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent release into a sandy aquifer. 2. Estimation of DNAPL mass based on a multiple-component dissolution model.
    Broholm K; Feenstra S; Cherry JA
    Environ Sci Technol; 2005 Jan; 39(1):317-24. PubMed ID: 15667112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers.
    Hunkeler D; Chollet N; Pittet X; Aravena R; Cherry JA; Parker BL
    J Contam Hydrol; 2004 Oct; 74(1-4):265-82. PubMed ID: 15358496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term ground penetrating radar monitoring of a small volume DNAPL release in a natural groundwater flow field.
    Hwang YK; Endres AL; Piggott SD; Parker BL
    J Contam Hydrol; 2008 Apr; 97(1-2):1-12. PubMed ID: 18258330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissolution of an emplaced source of DNAPL in a natural aquifer setting.
    Rivett MO; Feenstra S
    Environ Sci Technol; 2005 Jan; 39(2):447-55. PubMed ID: 15707043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlorinated ethene source remediation: lessons learned.
    Stroo HF; Leeson A; Marqusee JA; Johnson PC; Ward CH; Kavanaugh MC; Sale TC; Newell CJ; Pennell KD; Lebrón CA; Unger M
    Environ Sci Technol; 2012 Jun; 46(12):6438-47. PubMed ID: 22558915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation-based process optimization for surfactant-enhanced aquifer remediation at heterogeneous DNAPL-contaminated sites.
    Qin XS; Huang GH; Chakma A; Chen B; Zeng GM
    Sci Total Environ; 2007 Aug; 381(1-3):17-37. PubMed ID: 17509664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implications of alcohol partitioning behavior for in situ density modification of entrapped dense nonaqueous phase liquids.
    Kibbey TC; Ramsburg CA; Pennell KD; Hayes KF
    Environ Sci Technol; 2002 Jan; 36(1):104-11. PubMed ID: 11817369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soil vapor extraction in sandy soils: influence of airflow rate.
    Albergaria JT; Alvim-Ferraz Mda C; Delerue-Matos C
    Chemosphere; 2008 Nov; 73(9):1557-61. PubMed ID: 18804838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of low-temperature seasonal aquifer thermal energy storage (SATES) systems on chlorinated solvent contaminated groundwater: modeling of spreading and degradation.
    Zuurbier KG; Hartog N; Valstar J; Post VE; van Breukelen BM
    J Contam Hydrol; 2013 Apr; 147():1-13. PubMed ID: 23435174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geochemical reactions resulting from in situ oxidation of PCE-DNAPL by KMnO4 in a sandy aquifer.
    Nelson MD; Parker BL; Al TA; Cherry JA; Loomer D
    Environ Sci Technol; 2001 Mar; 35(6):1266-75. PubMed ID: 11347943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of mass transfer characteristics for DNAPL source depletion and contaminant flux in a highly characterized glaciofluvial aquifer.
    Maji R; Sudicky EA
    J Contam Hydrol; 2008 Nov; 102(1-2):105-19. PubMed ID: 18929427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time scales of DNAPL migration in sandy aquifers examined via numerical simulation.
    Gerhard JI; Pang T; Kueper BH
    Ground Water; 2007; 45(2):147-57. PubMed ID: 17335479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of DNAPL contact on the structure of smectitic clay materials.
    Ayral D; Otero M; Goltz MN; Demond AH
    Chemosphere; 2014 Jan; 95():182-7. PubMed ID: 24054135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The legacy of chlorinated solvents in the Birmingham aquifer, UK: observations spanning three decades and the challenge of future urban groundwater development.
    Rivett MO; Turner RJ; Glibbery Née Murcott P; Cuthbert MO
    J Contam Hydrol; 2012 Oct; 140-141():107-23. PubMed ID: 23022878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A controlled field experiment on groundwater contamination by a multicomponent DNAPL: dissolved-plume retardation.
    Rivett MO; Allen-King RM
    J Contam Hydrol; 2003 Oct; 66(1-2):117-46. PubMed ID: 14516944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity.
    Parker BL; Cherry JA; Chapman SW
    J Contam Hydrol; 2004 Oct; 74(1-4):197-230. PubMed ID: 15358493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An investigation into solvent extraction of pcbs from weathered soils.
    Jakher A; Achari G; Langford CH
    Environ Technol; 2007 Jan; 28(1):49-57. PubMed ID: 17283949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer.
    Bennett P; He F; Zhao D; Aiken B; Feldman L
    J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.