These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 17284197)

  • 1. The operant serial implicit learning task reveals early onset motor learning deficits in the Hdh knock-in mouse model of Huntington's disease.
    Trueman RC; Brooks SP; Jones L; Dunnett SB
    Eur J Neurosci; 2007 Jan; 25(2):551-8. PubMed ID: 17284197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The utilisation of operant delayed matching and non-matching to position for probing cognitive flexibility and working memory in mouse models of Huntington's disease.
    Yhnell E; Dunnett SB; Brooks SP
    J Neurosci Methods; 2016 May; 265():72-80. PubMed ID: 26321735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abnormal explicit but normal implicit sequence learning in premanifest and early Huntington's disease.
    Schneider SA; Wilkinson L; Bhatia KP; Henley SM; Rothwell JC; Tabrizi SJ; Jahanshahi M
    Mov Disord; 2010 Jul; 25(10):1343-9. PubMed ID: 20544716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mouse Huntington's disease homolog mRNA levels: variation and allele effects.
    Dixon KT; Cearley JA; Hunter JM; Detloff PJ
    Gene Expr; 2004; 11(5-6):221-31. PubMed ID: 15200234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep behavioural phenotyping of the Q175 Huntington disease mouse model: effects of age, sex, and weight.
    Koch ET; Cheng J; Ramandi D; Sepers MD; Hsu A; Fong T; Murphy TH; Yttri E; Raymond LA
    BMC Biol; 2024 May; 22(1):121. PubMed ID: 38783261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Timed Sequence Task: A New Paradigm to Study Motor Learning and Flexibility in Mice.
    Urushadze A; Janicek M; Abbondanza A; Janickova H
    eNeuro; 2023 Oct; 10(10):. PubMed ID: 37793806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A kinematically complex multi-articular motor skill for investigating implicit motor learning.
    Solomon JP; Hurst AJ; Kraeutner SN; Ingram TGJ; Boe SG
    Psychol Res; 2024 Jun; ():. PubMed ID: 38940820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A low-cost open-source 5-choice operant box system optimized for electrophysiology and optophysiology in mice.
    Kapanaiah SKT; van der Veen B; Strahnen D; Akam T; Kätzel D
    Sci Rep; 2021 Nov; 11(1):22279. PubMed ID: 34782697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HD mouse models reveal clear deficits in learning to perform a simple instrumental response.
    Oakeshott S; Port RG; Cummins-Sutphen J; Watson-Johnson J; Ramboz S; Park L; Howland D; Brunner D
    PLoS Curr; 2011 Nov; 3():RRN1282. PubMed ID: 22512000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring Fine and Associative Motor Learning in Mice Using the Erasmus Ladder.
    Staffa A; Chatterjee M; Diaz-Tahoces A; Leroy F; Perez-Otaño I
    J Vis Exp; 2023 Dec; (202):. PubMed ID: 38163265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pros and cons of narrow- versus wide-compartment rotarod apparatus: An experimental study in mice.
    Keane SP; Chadman KK; Gomez AR; Hu W
    Behav Brain Res; 2024 Apr; 463():114901. PubMed ID: 38341101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioral evidence for two distinct memory systems in rats.
    Miller N; Ayoub R; Sentinathan G; Mallet PE
    Anim Cogn; 2022 Dec; 25(6):1599-1608. PubMed ID: 35731425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical circuit alterations precede motor impairments in Huntington's disease mice.
    Burgold J; Schulz-Trieglaff EK; Voelkl K; Gutiérrez-Ángel S; Bader JM; Hosp F; Mann M; Arzberger T; Klein R; Liebscher S; Dudanova I
    Sci Rep; 2019 Apr; 9(1):6634. PubMed ID: 31036840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring computerised cognitive training as a therapeutic intervention for people with Huntington's disease (CogTrainHD): protocol for a randomised feasibility study.
    Yhnell E; Furby H; Breen RS; Brookes-Howell LC; Drew CJG; Playle R; Watson G; Metzler-Baddeley C; Rosser AE; Busse ME
    Pilot Feasibility Stud; 2018; 4():45. PubMed ID: 29445514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Automated Home-Cage System to Assess Learning and Performance of a Skilled Motor Task in a Mouse Model of Huntington's Disease.
    Woodard CL; Bolaños F; Boyd JD; Silasi G; Murphy TH; Raymond LA
    eNeuro; 2017; 4(5):. PubMed ID: 28929129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Longitudinal Operant Assessment of Cognitive and Behavioural Changes in the HdhQ111 Mouse Model of Huntington's Disease.
    Yhnell E; Dunnett SB; Brooks SP
    PLoS One; 2016; 11(10):e0164072. PubMed ID: 27701442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cognitive dysfunction in Huntington's disease: mechanisms and therapeutic strategies beyond BDNF.
    Puigdellívol M; Saavedra A; Pérez-Navarro E
    Brain Pathol; 2016 Nov; 26(6):752-771. PubMed ID: 27529673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An enhanced Q175 knock-in mouse model of Huntington disease with higher mutant huntingtin levels and accelerated disease phenotypes.
    Southwell AL; Smith-Dijak A; Kay C; Sepers M; Villanueva EB; Parsons MP; Xie Y; Anderson L; Felczak B; Waltl S; Ko S; Cheung D; Dal Cengio L; Slama R; Petoukhov E; Raymond LA; Hayden MR
    Hum Mol Genet; 2016 Sep; 25(17):3654-3675. PubMed ID: 27378694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cognitive training modifies disease symptoms in a mouse model of Huntington's disease.
    Yhnell E; Lelos MJ; Dunnett SB; Brooks SP
    Exp Neurol; 2016 Aug; 282():19-26. PubMed ID: 27163546
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.