These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 17284354)

  • 41. Effects of ultrasonic disintegration on sludge microbial activity and dewaterability.
    Huan L; Yiying J; Mahar RB; Zhiyu W; Yongfeng N
    J Hazard Mater; 2009 Jan; 161(2-3):1421-6. PubMed ID: 18547717
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultrasonication of wastewater sludge--consequences on biodegradability and flowability.
    Pham TT; Brar SK; Tyagi RD; Surampalli RY
    J Hazard Mater; 2009 Apr; 163(2-3):891-8. PubMed ID: 18768255
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Medium composition affects the degree and pattern of cadmium inhibition of naphthalene biodegradation.
    Hoffman DR; Okon JL; Sandrin TR
    Chemosphere; 2005 May; 59(7):919-27. PubMed ID: 15823325
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Isolation and characterization of naphthalene-degrading bacteria from sediments of Cadiz area (SW Spain).
    Nair D; Fernández-Acero FJ; García-Luque E; Riba I; Del Valls TA
    Environ Toxicol; 2008 Oct; 23(5):576-82. PubMed ID: 18528908
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads.
    Ha J; Engler CR; Wild JR
    Bioresour Technol; 2009 Feb; 100(3):1138-42. PubMed ID: 18845433
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Scale-up impacts on mass transfer and bioremediation of suspended naphthalene particles in bead mill bioreactors.
    Wang Y; Riess R; Nemati M; Hill G; Headley J
    Bioresour Technol; 2008 Nov; 99(17):8143-50. PubMed ID: 18468888
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Oxidation of naphthalene and salicylic acid by bacteria of the genus Pseudomonas].
    Tin'ianova NZ; Kvasnikov EI
    Mikrobiol Zh; 1973; 35(5):550-3. PubMed ID: 4205963
    [No Abstract]   [Full Text] [Related]  

  • 48. Evaluating the biodegradation of aromatic hydrocarbons by monitoring of several functional genes.
    Piskonen R; Nyyssönen M; Itävaara M
    Biodegradation; 2008 Nov; 19(6):883-95. PubMed ID: 18425625
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ultrasonic disintegration of biosolids for improved biodegradation.
    Nickel K; Neis U
    Ultrason Sonochem; 2007 Apr; 14(4):450-5. PubMed ID: 17289422
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phenol degradation by Aureobasidium pullulans FE13 isolated from industrial effluents.
    Dos Santos VL; Monteiro Ade S; Braga DT; Santoro MM
    J Hazard Mater; 2009 Jan; 161(2-3):1413-20. PubMed ID: 18541369
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Study on degradation of dimethoate solution in ultrasonic airlift loop reactor.
    Liu YN; Jin D; Lu XP; Han PF
    Ultrason Sonochem; 2008 Jul; 15(5):755-60. PubMed ID: 18262458
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Removal of microbial biofilm on Water Hyacinth plants roots by ultrasonic treatment.
    Kirzhner F; Zimmels Y; Malkovskaja A; Starosvetsky J
    Ultrasonics; 2009 Feb; 49(2):153-8. PubMed ID: 18951602
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhancement of methyl tert-butyl ether degradation by the addition of readily metabolizable organic substrates.
    Chen D; Chen J; Zhong W
    J Hazard Mater; 2009 Aug; 167(1-3):860-5. PubMed ID: 19231071
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantification of biodegradation for o-xylene and naphthalene using first order decay models, Michaelis-Menten kinetics and stable carbon isotopes.
    Blum P; Hunkeler D; Weede M; Beyer C; Grathwohl P; Morasch B
    J Contam Hydrol; 2009 Apr; 105(3-4):118-30. PubMed ID: 19155091
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Production of high hydroxytyrosol yields via tyrosol conversion by Pseudomonas aeruginosa immobilized resting cells.
    Bouallagui Z; Sayadi S
    J Agric Food Chem; 2006 Dec; 54(26):9906-11. PubMed ID: 17177519
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Whole cell-derived fatty acid profiles of Pseudomonas sp. JS150 during naphthalene degradation.
    Mrozik A; Labuzek S; Piotrowska-Seget Z
    Pol J Microbiol; 2005; 54(2):137-44. PubMed ID: 16209107
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Degradation of methyl tert-butyl ether by gel immobilized Methylibium petroleiphilum PM1.
    Chen D; Chen J; Zhong W; Cheng Z
    Bioresour Technol; 2008 Jul; 99(11):4702-8. PubMed ID: 17983743
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Formation of structured communities by natural and transgenic naphthalene-consuming bacteria].
    Mogil'naia OA; Krivomazova ES; Kargatova TV; Lobova TI; Popova LIu
    Prikl Biokhim Mikrobiol; 2005; 41(1):72-8. PubMed ID: 15810736
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Partial nitrification to nitrite for treating ammonium-rich organic wastewater by immobilized biomass system.
    Yan J; Hu YY
    Bioresour Technol; 2009 Apr; 100(8):2341-7. PubMed ID: 19128965
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Role of additional substrates in DDT degradation by cultures of Pseudomonas aeruginosa].
    Mal'tseva OV; Golovleva LA
    Mikrobiologiia; 1985; 54(2):222-6. PubMed ID: 3925302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.