BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 17284835)

  • 1. Rhythmic cycle of clathrin-coated pit formation at the trans-golgi network in human MDA-MB-435 cells.
    Sakaushi S; Senda-Murata K; Fukada T; Oka S; Sugimoto K
    Biosci Biotechnol Biochem; 2007 Feb; 71(2):571-4. PubMed ID: 17284835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptor and clathrin exchange at the plasma membrane and trans-Golgi network.
    Wu X; Zhao X; Puertollano R; Bonifacino JS; Eisenberg E; Greene LE
    Mol Biol Cell; 2003 Feb; 14(2):516-28. PubMed ID: 12589051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology and dynamics of clathrin/GGA1-coated carriers budding from the trans-Golgi network.
    Puertollano R; van der Wel NN; Greene LE; Eisenberg E; Peters PJ; Bonifacino JS
    Mol Biol Cell; 2003 Apr; 14(4):1545-57. PubMed ID: 12686608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron tomography of RabA4b- and PI-4Kβ1-labeled trans Golgi network compartments in Arabidopsis.
    Kang BH; Nielsen E; Preuss ML; Mastronarde D; Staehelin LA
    Traffic; 2011 Mar; 12(3):313-29. PubMed ID: 21134079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of amphiphysins with AP-1 clathrin adaptors at the membrane.
    Huser S; Suri G; Crottet P; Spiess M
    Biochem J; 2013 Feb; 450(1):73-83. PubMed ID: 23190214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting of the GRIP domain to the trans-Golgi network is conserved from protists to animals.
    McConville MJ; Ilgoutz SC; Teasdale RD; Foth BJ; Matthews A; Mullin KA; Gleeson PA
    Eur J Cell Biol; 2002 Sep; 81(9):485-95. PubMed ID: 12416725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creating a chimeric clathrin heavy chain that functions independently of yeast clathrin light chain.
    Boettner DR; Segarra VA; Moorthy BT; de León N; Creagh J; Collette JR; Malhotra A; Lemmon SK
    Traffic; 2016 Jul; 17(7):754-68. PubMed ID: 27062026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of clathrin assembly lymphoid myeloid leukemia protein depletion on clathrin coat formation.
    Meyerholz A; Hinrichsen L; Groos S; Esk PC; Brandes G; Ungewickell EJ
    Traffic; 2005 Dec; 6(12):1225-34. PubMed ID: 16262731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization of TGN-endosome trafficking in mammalian and Drosophila cells.
    Kametaka S; Waguri S
    Methods Enzymol; 2012; 504():255-71. PubMed ID: 22264539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lysosomal hydrolase mannose 6-phosphate uncovering enzyme resides in the trans-Golgi network.
    Rohrer J; Kornfeld R
    Mol Biol Cell; 2001 Jun; 12(6):1623-31. PubMed ID: 11408573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LdARF1 in trafficking and structural maintenance of the trans-Golgi cisternal network in the protozoan pathogen Leishmania donovani.
    Porter-Kelley JM; Gerald NJ; Engel JC; Ghedin E; Dwyer DM
    Traffic; 2004 Nov; 5(11):868-83. PubMed ID: 15479452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Actin dynamics coupled to clathrin-coated vesicle formation at the trans-Golgi network.
    Carreno S; Engqvist-Goldstein AE; Zhang CX; McDonald KL; Drubin DG
    J Cell Biol; 2004 Jun; 165(6):781-8. PubMed ID: 15210728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlative Light and Electron Microscopy Imaging of the Plant trans-Golgi Network.
    Wang P; Kang BH
    Methods Mol Biol; 2020; 2177():59-67. PubMed ID: 32632805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transporter regulator RS1 (RSC1A1) coats the trans-Golgi network and migrates into the nucleus.
    Kroiss M; Leyerer M; Gorboulev V; Kühlkamp T; Kipp H; Koepsell H
    Am J Physiol Renal Physiol; 2006 Dec; 291(6):F1201-12. PubMed ID: 16788147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endocytosis by random initiation and stabilization of clathrin-coated pits.
    Ehrlich M; Boll W; Van Oijen A; Hariharan R; Chandran K; Nibert ML; Kirchhausen T
    Cell; 2004 Sep; 118(5):591-605. PubMed ID: 15339664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arabidopsis dynamin-related proteins DRP2B and DRP1A participate together in clathrin-coated vesicle formation during endocytosis.
    Fujimoto M; Arimura S; Ueda T; Takanashi H; Hayashi Y; Nakano A; Tsutsumi N
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6094-9. PubMed ID: 20231465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A distinct class of vesicles derived from the trans-Golgi mediates secretion of xylogalacturonan in the root border cell.
    Wang P; Chen X; Goldbeck C; Chung E; Kang BH
    Plant J; 2017 Nov; 92(4):596-610. PubMed ID: 28865155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Distinct Pathway for Polar Exocytosis in Plant Cell Wall Formation.
    Wang H; Zhuang X; Wang X; Law AH; Zhao T; Du S; Loy MM; Jiang L
    Plant Physiol; 2016 Oct; 172(2):1003-1018. PubMed ID: 27531442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. E-cadherin transport from the trans-Golgi network in tubulovesicular carriers is selectively regulated by golgin-97.
    Lock JG; Hammond LA; Houghton F; Gleeson PA; Stow JL
    Traffic; 2005 Dec; 6(12):1142-56. PubMed ID: 16262725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic behavior of FCHO1 revealed by live-cell imaging microscopy: its possible involvement in clathrin-coated vesicle formation.
    Sakaushi S; Inoue K; Zushi H; Senda-Murata K; Fukada T; Oka S; Sugimoto K
    Biosci Biotechnol Biochem; 2007 Jul; 71(7):1764-8. PubMed ID: 17617719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.