BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 17285287)

  • 1. Synthesis of chiral alpha-hydroxy amides by two sequential enzymatic catalyzed reactions.
    Salinas Y; Oliart RM; Ramírez-Lepe M; Navarro-Ocaña A; Valerio-Alfaro G
    Appl Microbiol Biotechnol; 2007 May; 75(2):297-302. PubMed ID: 17285287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic investigation of Saccharomyces cerevisiae enzymes catalyzing carbonyl reductions.
    Kaluzna IA; Matsuda T; Sewell AK; Stewart JD
    J Am Chem Soc; 2004 Oct; 126(40):12827-32. PubMed ID: 15469278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of flavor and fragrance esters using Candida antarctica lipase.
    Larios A; García HS; Oliart RM; Valerio-Alfaro G
    Appl Microbiol Biotechnol; 2004 Sep; 65(4):373-6. PubMed ID: 15248036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereoselective synthesis of caffeic acid amides via enzyme-catalyzed asymmetric aminolysis reaction.
    Xiao P; Zhang S; Ma H; Zhang A; Lv X; Zheng L
    J Biotechnol; 2013 Dec; 168(4):552-9. PubMed ID: 24056082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective lipase-catalyzed ester hydrolysis: effects on rates and enantioselectivity from a variation of the ester structure.
    Bojarski J; Oxelbark J; Andersson C; Allenmark S
    Chirality; 1993; 5(3):154-8. PubMed ID: 8338725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-conventional hydrolase chemistry: amide and carbamate bond formation catalyzed by lipases.
    Gotor V
    Bioorg Med Chem; 1999 Oct; 7(10):2189-97. PubMed ID: 10579525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consecutive three-component synthesis of (hetero)arylated propargyl amides by chemoenzymatic aminolysis-Sonogashira coupling sequence.
    Hassan S; Ullrich A; Müller TJ
    Org Biomol Chem; 2015 Feb; 13(5):1571-6. PubMed ID: 25500803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of 1,3-dithianes and 1,3-dithiolanes. Baker's yeast reduction and lipase-catalyzed resolution for synthesis of enantiopure derivatives.
    Anthonsen T; Hoff BH; Hofsløkken NU; Skattebøl L; Sundby E
    Acta Chem Scand (Cph); 1999 May; 53(5):360-5. PubMed ID: 10353187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereoselective, biocatalytic reductions of alpha-chloro-beta-keto esters.
    Kaluzna IA; Feske BD; Wittayanan W; Ghiviriga I; Stewart JD
    J Org Chem; 2005 Jan; 70(1):342-5. PubMed ID: 15624945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemoenzymatic dynamic kinetic resolution of acyloins.
    Odman P; Wessjohann LA; Bornscheuer UT
    J Org Chem; 2005 Nov; 70(23):9551-5. PubMed ID: 16268632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantioselective aminolysis of an alpha-chloroester catalyzed by Candida cylindracea lipase encapsulated in sol-gel silica glass.
    Badjić JD; Kadnikova EN; Kostić NM
    Org Lett; 2001 Jun; 3(13):2025-8. PubMed ID: 11418040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial/enzymatic synthesis of chiral drug intermediates.
    Patel RN
    Adv Appl Microbiol; 2000; 47():33-78. PubMed ID: 12876794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated process: ester synthesis in an enzymatic membrane reactor and water sorption.
    Trusek-Holownia A; Noworyta A
    J Biotechnol; 2007 May; 130(1):47-56. PubMed ID: 17434222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral cobalt-catalyzed enantioselective aerobic oxidation of α-hydroxy esters.
    Alamsetti SK; Sekar G
    Chem Commun (Camb); 2010 Oct; 46(38):7235-7. PubMed ID: 20820516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of enzyme, strain and reaction engineering to overcome limitations of baker's yeast in the asymmetric reduction of alpha-keto esters.
    Kratzer R; Egger S; Nidetzky B
    Biotechnol Bioeng; 2008 Dec; 101(5):1094-101. PubMed ID: 18623228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipase-catalyzed glucose fatty acid ester synthesis in ionic liquids.
    Ganske F; Bornscheuer UT
    Org Lett; 2005 Jul; 7(14):3097-8. PubMed ID: 15987214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic synthesis of quercetin oleate esters using Candida antarctica lipase B.
    Saik AY; Lim YY; Stanslas J; Choo WS
    Biotechnol Lett; 2017 Feb; 39(2):297-304. PubMed ID: 27812823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A chemoenzymatic approach to the synthesis of enantiomerically pure (S)-3-hydroxy-gamma-butyrolactone.
    Lee SH; Park OJ; Uh HS
    Appl Microbiol Biotechnol; 2008 Jun; 79(3):355-62. PubMed ID: 18446525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of two oxidoreductases involved in the enantioselective reduction of 3-oxo, 4-oxo and 5-oxo esters in baker's yeast.
    Heidlas J; Engel KH; Tressl R
    Eur J Biochem; 1988 Mar; 172(3):633-9. PubMed ID: 3280313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly selective enzymatic kinetic resolution of primary amines at 80 degrees C: a comparative study of carboxylic acids and their ethyl esters as acyl donors.
    Nechab M; Azzi N; Vanthuyne N; Bertrand M; Gastaldi S; Gil G
    J Org Chem; 2007 Aug; 72(18):6918-23. PubMed ID: 17676806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.