These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 17285291)

  • 1. Stochastic identification of bioreactor process exhibiting input multiplicity.
    Amrit R; Saha P
    Bioprocess Biosyst Eng; 2007 May; 30(3):165-72. PubMed ID: 17285291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear control of bioreactors with input multiplicities--an experimental work.
    Kumar SV; Kumar VR; Reddy GP
    Bioprocess Biosyst Eng; 2005 Nov; 28(1):45-53. PubMed ID: 16133471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic cooperativity in non-linear dynamics of genetic regulatory networks.
    Rosenfeld S
    Math Biosci; 2007 Nov; 210(1):121-42. PubMed ID: 17617426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NARMAX representation and identification of ankle dynamics.
    Kukreja SL; Galiana HL; Kearney RE
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):70-81. PubMed ID: 12617526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic programming assisted stochastic optimization strategies for optimization of glucose to gluconic acid fermentation.
    Cheema JJ; Sankpal NV; Tambe SS; Kulkarni BD
    Biotechnol Prog; 2002; 18(6):1356-65. PubMed ID: 12467472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. General methodology for nonlinear modeling of neural systems with Poisson point-process inputs.
    Marmarelis VZ; Berger TW
    Math Biosci; 2005 Jul; 196(1):1-13. PubMed ID: 15963534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of neural systems by use of neuronal modes.
    Marmarelis VZ; Orme ME
    IEEE Trans Biomed Eng; 1993 Nov; 40(11):1149-58. PubMed ID: 8307599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A modified NARMAX model-based self-tuner with fault tolerance for unknown nonlinear stochastic hybrid systems with an input-output direct feed-through term.
    Tsai JS; Hsu WT; Lin LG; Guo SM; Tann JW
    ISA Trans; 2014 Jan; 53(1):56-75. PubMed ID: 24012389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated framework of nonlinear prediction and process monitoring for complex biological processes.
    Yoo CK; Lee IB
    Bioprocess Biosyst Eng; 2006 Oct; 29(4):213-28. PubMed ID: 16951939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of an improved continuous parallel shaken bioreactor system for three microbial model systems.
    Akgün A; Müller C; Engmann R; Büchs J
    Bioprocess Biosyst Eng; 2008 Apr; 31(3):193-205. PubMed ID: 18175155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical interpretation of the interplay between noise and chaos in the stochastic logistic map.
    Erguler K; Stumpf MP
    Math Biosci; 2008 Nov; 216(1):90-9. PubMed ID: 18805431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model of TLR4 signaling and tolerance using a qualitative, particle-event-based method: introduction of spatially configured stochastic reaction chambers (SCSRC).
    An G
    Math Biosci; 2009 Jan; 217(1):43-52. PubMed ID: 18950646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive controller evaluation including non-stationary high frequency noise and outliers for batch solid substrate fermentation bioreactors.
    Pérez-Correa JR; Fernández-Fernández M
    Bioprocess Biosyst Eng; 2006 Dec; 29(5-6):399-407. PubMed ID: 17082913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward a stochastic formulation of microbial growth in relation to bioreactor performances: case study of an E. coli fed-batch process.
    Delvigne F; Destain J; Thonart P
    Biotechnol Prog; 2006; 22(4):1114-24. PubMed ID: 16889388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic models to study the impact of mixing on a fed-batch culture of Saccharomyces cerevisiae.
    Delvigne F; Lejeune A; Destain J; Thonart P
    Biotechnol Prog; 2006; 22(1):259-69. PubMed ID: 16454518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of nonlinear feedback control.
    Snippe HP; van Hateren JH
    Neural Comput; 2007 May; 19(5):1179-214. PubMed ID: 17381264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalar modeling and analysis of a 3D biochemical reaction model.
    Maquet J; Letellier C; Aguirre LA
    J Theor Biol; 2004 Jun; 228(3):421-30. PubMed ID: 15135040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic modeling of complex biological systems: a link between metabolic and macroscopic description.
    Haag JE; Vande Wouwer A; Bogaerts P
    Math Biosci; 2005 Jan; 193(1):25-49. PubMed ID: 15681275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a class of Wiener and Hammerstein-type nonlinear processes with monotonic static gains.
    Mehta U; Majhi S
    ISA Trans; 2010 Oct; 49(4):501-9. PubMed ID: 20472233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delay-dependent guaranteed cost control for uncertain stochastic fuzzy systems with multiple time delays.
    Zhang H; Wang Y; Liu D
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):126-40. PubMed ID: 18270087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.