These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 17285333)

  • 21. Measurements of vocal fold tissue viscoelasticity: approaching the male phonatory frequency range.
    Chan RW
    J Acoust Soc Am; 2004 Jun; 115(6):3161-70. PubMed ID: 15237840
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Viscoelastic shear properties of human vocal fold mucosa: measurement methodology and empirical results.
    Chan RW; Titze IR
    J Acoust Soc Am; 1999 Oct; 106(4 Pt 1):2008-21. PubMed ID: 10530024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stress-strain response of the human vocal ligament.
    Min YB; Titze IR; Alipour-Haghighi F
    Ann Otol Rhinol Laryngol; 1995 Jul; 104(7):563-9. PubMed ID: 7598370
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biaxial mechanical properties of human vocal fold cover under vocal fold elongation.
    Zhang Z; Samajder H; Long JL
    J Acoust Soc Am; 2017 Oct; 142(4):EL356. PubMed ID: 29092582
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Could spatial heterogeneity in human vocal fold elastic properties improve the quality of phonation?
    Kelleher JE; Siegmund T; Chan RW
    Ann Biomed Eng; 2012 Dec; 40(12):2708-18. PubMed ID: 22707177
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics.
    Chan RW; Titze IR
    J Acoust Soc Am; 2006 Apr; 119(4):2351-62. PubMed ID: 16642848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A simple-shear rheometer for linear viscoelastic characterization of vocal fold tissues at phonatory frequencies.
    Chan RW; Rodriguez ML
    J Acoust Soc Am; 2008 Aug; 124(2):1207-19. PubMed ID: 18681608
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurement of the elasticity modulus of soft tissues.
    Zörner S; Kaltenbacher M; Lerch R; Sutor A; Döllinger M
    J Biomech; 2010 May; 43(8):1540-5. PubMed ID: 20189571
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elasticity of the human false vocal fold.
    Chan RW; Fu M; Tirunagari N
    Ann Otol Rhinol Laryngol; 2006 May; 115(5):370-81. PubMed ID: 16739670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Young's modulus of canine vocal fold cover layers.
    Chhetri DK; Rafizadeh S
    J Voice; 2014 Jul; 28(4):406-10. PubMed ID: 24491497
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rheometric properties of canine vocal fold tissues: variation with anatomic location.
    Kimura M; Mau T; Chan RW
    Auris Nasus Larynx; 2011 Jun; 38(3):367-72. PubMed ID: 21035291
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relative contributions of collagen and elastin to elasticity of the vocal fold under tension.
    Chan RW; Fu M; Young L; Tirunagari N
    Ann Biomed Eng; 2007 Aug; 35(8):1471-83. PubMed ID: 17453348
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic nanomechanical analysis of the vocal fold structure in excised larynges.
    Dion GR; Coelho PG; Teng S; Janal MN; Amin MR; Branski RC
    Laryngoscope; 2017 Jul; 127(7):E225-E230. PubMed ID: 27873325
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Viscoelastic properties of phonosurgical biomaterials at phonatory frequencies.
    Kimura M; Mau T; Chan RW
    Laryngoscope; 2010 Apr; 120(4):764-8. PubMed ID: 20213661
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomechanical Flow Amplification Arising From the Variable Deformation of the Subglottic Mucosa.
    Goodyer E; Müller F; Hess M; Kandan K; Farukh F
    J Voice; 2017 Nov; 31(6):669-674. PubMed ID: 28433346
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-frequency viscoelastic shear properties of vocal fold tissues: implications for vocal fold tissue engineering.
    Teller SS; Farran AJ; Xiao L; Jiao T; Duncan RL; Clifton RJ; Jia X
    Tissue Eng Part A; 2012 Oct; 18(19-20):2008-19. PubMed ID: 22741523
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomechanical effects of hydration in vocal fold tissues.
    Chan RW; Tayama N
    Otolaryngol Head Neck Surg; 2002 May; 126(5):528-37. PubMed ID: 12075228
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vocal fold contact pressure in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2019 Jul; 146(1):256. PubMed ID: 31370600
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimation of viscoelastic shear properties of vocal-fold tissues based on time-temperature superposition.
    Chan RW
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1548-61. PubMed ID: 11572365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic Biomechanical Analysis of Vocal Folds Using Pipette Aspiration Technique.
    Scheible F; Lamprecht R; Semmler M; Sutor A
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33919359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.