BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 17285623)

  • 21. What can disulfide bonds tell us about protein energetics, function and folding: simulations and bioninformatics analysis.
    Abkevich VI; Shakhnovich EI
    J Mol Biol; 2000 Jul; 300(4):975-85. PubMed ID: 10891282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conformational characterization of disulfide bonds: a tool for protein classification.
    Marques JR; da Fonseca RR; Drury B; Melo A
    J Theor Biol; 2010 Dec; 267(3):388-95. PubMed ID: 20851707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving disulfide connectivity prediction with sequential distance between oxidized cysteines.
    Tsai CH; Chen BJ; Chan CH; Liu HL; Kao CY
    Bioinformatics; 2005 Dec; 21(24):4416-9. PubMed ID: 16223789
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Large-scale prediction of disulphide bridges using kernel methods, two-dimensional recursive neural networks, and weighted graph matching.
    Cheng J; Saigo H; Baldi P
    Proteins; 2006 Mar; 62(3):617-29. PubMed ID: 16320312
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New algorithm for the identification of intact disulfide linkages based on fragmentation characteristics in tandem mass spectra.
    Choi S; Jeong J; Na S; Lee HS; Kim HY; Lee KJ; Paek E
    J Proteome Res; 2010 Jan; 9(1):626-35. PubMed ID: 19902913
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of disulfide bonds in the structure and function of murine epidermal growth factor (mEGF).
    Alewood D; Nielsen K; Alewood PF; Craik DJ; Andrews P; Nerrie M; White S; Domagala T; Walker F; Rothacker J; Burgess AW; Nice EC
    Growth Factors; 2005 Jun; 23(2):97-110. PubMed ID: 16019431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Limited tendency of alpha-helical residues to form disulfide bridges: a structural explanation.
    De Simone A; Berisio R; Zagari A; Vitagliano L
    J Pept Sci; 2006 Dec; 12(12):740-7. PubMed ID: 17131286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural classification of small, disulfide-rich protein domains.
    Cheek S; Krishna SS; Grishin NV
    J Mol Biol; 2006 May; 359(1):215-37. PubMed ID: 16618491
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting the state of cysteines based on sequence information.
    Guang X; Guo Y; Xiao J; Wang X; Sun J; Xiong W; Li M
    J Theor Biol; 2010 Dec; 267(3):312-8. PubMed ID: 20826168
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of disulphide bond connectivity patterns in protein tertiary structure.
    Jai Kartik V; Lavanya T; Guruprasad K
    Int J Biol Macromol; 2006 May; 38(3-5):174-9. PubMed ID: 16580722
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Learning to discriminate between ligand-bound and disulfide-bound cysteines.
    Passerini A; Frasconi P
    Protein Eng Des Sel; 2004 Apr; 17(4):367-73. PubMed ID: 15166311
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clustering-based model of cysteine co-evolution improves disulfide bond connectivity prediction and reduces homologous sequence requirements.
    Raimondi D; Orlando G; Vranken WF
    Bioinformatics; 2015 Apr; 31(8):1219-25. PubMed ID: 25492406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mass spectrometric based mapping of the disulfide bonding patterns of integrin alpha chains.
    Krokhin OV; Cheng K; Sousa SL; Ens W; Standing KG; Wilkins JA
    Biochemistry; 2003 Nov; 42(44):12950-9. PubMed ID: 14596610
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification.
    Ferrè F; Clote P
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W182-5. PubMed ID: 16844987
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CysView: protein classification based on cysteine pairing patterns.
    Lenffer J; Lai P; El Mejaber W; Khan AM; Koh JL; Tan PT; Seah SH; Brusic V
    Nucleic Acids Res; 2004 Jul; 32(Web Server issue):W350-5. PubMed ID: 15215409
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using pseudo-amino acid composition and support vector machine to predict protein structural class.
    Chen C; Tian YX; Zou XY; Cai PX; Mo JY
    J Theor Biol; 2006 Dec; 243(3):444-8. PubMed ID: 16908032
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of the disulfide-bonding state of cysteines in proteins based on dipeptide composition.
    Song JN; Wang ML; Li WJ; Xu WB
    Biochem Biophys Res Commun; 2004 May; 318(1):142-7. PubMed ID: 15110765
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using pseudo amino acid composition and binary-tree support vector machines to predict protein structural classes.
    Zhang TL; Ding YS
    Amino Acids; 2007 Nov; 33(4):623-9. PubMed ID: 17308864
    [TBL] [Abstract][Full Text] [Related]  

  • 40. diSBPred: A machine learning based approach for disulfide bond prediction.
    Mishra A; Kabir MWU; Hoque MT
    Comput Biol Chem; 2021 Apr; 91():107436. PubMed ID: 33550156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.