BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1728587)

  • 1. Constitutive myc expression impairs hypertrophy and calcification in cartilage.
    Quarto R; Dozin B; Tacchetti C; Robino G; Zenke M; Campanile G; Cancedda R
    Dev Biol; 1992 Jan; 149(1):168-76. PubMed ID: 1728587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Type X collagen synthesis during in vitro development of chick embryo tibial chondrocytes.
    Castagnola P; Moro G; Descalzi-Cancedda F; Cancedda R
    J Cell Biol; 1986 Jun; 102(6):2310-7. PubMed ID: 3711147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ascorbate modulation of chondrocyte gene expression is independent of its role in collagen secretion.
    Sullivan TA; Uschmann B; Hough R; Leboy PS
    J Biol Chem; 1994 Sep; 269(36):22500-6. PubMed ID: 8077198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progression and recapitulation of the chondrocyte differentiation program: cartilage matrix protein is a marker for cartilage maturation.
    Chen Q; Johnson DM; Haudenschild DR; Goetinck PF
    Dev Biol; 1995 Nov; 172(1):293-306. PubMed ID: 7589809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypertrophy is not a prerequisite for type X collagen expression or mineralization of chondrocytes derived from cultured chick mandibular ectomesenchyme.
    Ekanayake S; Hall BK
    Int J Dev Biol; 1994 Dec; 38(4):683-94. PubMed ID: 7779689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypertrophic chondrocytes undergo further differentiation in culture.
    Descalzi Cancedda F; Gentili C; Manduca P; Cancedda R
    J Cell Biol; 1992 Apr; 117(2):427-35. PubMed ID: 1560033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of calcium deficiency on chondrocyte hypertrophy and type X collagen expression in chick embryonic sternum.
    Reginato AM; Tuan RS; Ono T; Jimenez SA; Jacenko O
    Dev Dyn; 1993 Dec; 198(4):284-95. PubMed ID: 8130376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene expression and extracellular matrix ultrastructure of a mineralizing chondrocyte cell culture system.
    Gerstenfeld LC; Landis WJ
    J Cell Biol; 1991 Feb; 112(3):501-13. PubMed ID: 1991793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression and role of c-myc in chondrocytes undergoing endochondral ossification.
    Iwamoto M; Yagami K; Lu Valle P; Olsen BR; Petropoulos CJ; Ewert DL; Pacifici M
    J Biol Chem; 1993 May; 268(13):9645-52. PubMed ID: 8486652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An established rat cell line expressing chondrocyte properties.
    Horton WE; Cleveland J; Rapp U; Nemuth G; Bolander M; Doege K; Yamada Y; Hassell JR
    Exp Cell Res; 1988 Oct; 178(2):457-68. PubMed ID: 3049123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of type II and type XI collagen synthesis by an immortalized rat chondrocyte cell line (IRC) having a low level of type II collagen mRNA expression.
    Oxford JT; Doege KJ; Horton WE; Morris NP
    Exp Cell Res; 1994 Jul; 213(1):28-36. PubMed ID: 8020600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulated production of mineralization-competent matrix vesicles in hypertrophic chondrocytes.
    Kirsch T; Nah HD; Shapiro IM; Pacifici M
    J Cell Biol; 1997 Jun; 137(5):1149-60. PubMed ID: 9166414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in the expression of annexin A5 gene during in vitro chondrocyte differentiation: influence of cell attachment.
    Turnay J; Olmo N; Lizarbe MA; von der Mark K
    J Cell Biochem; 2001; 84(1):132-42. PubMed ID: 11746522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parathyroid hormone [PTH(1-34)] and parathyroid hormone-related protein [PTHrP(1-34)] promote reversion of hypertrophic chondrocytes to a prehypertrophic proliferating phenotype and prevent terminal differentiation of osteoblast-like cells.
    Zerega B; Cermelli S; Bianco P; Cancedda R; Cancedda FD
    J Bone Miner Res; 1999 Aug; 14(8):1281-9. PubMed ID: 10457260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ascorbic acid induces alkaline phosphatase, type X collagen, and calcium deposition in cultured chick chondrocytes.
    Leboy PS; Vaias L; Uschmann B; Golub E; Adams SL; Pacifici M
    J Biol Chem; 1989 Oct; 264(29):17281-6. PubMed ID: 2793855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of bone-related proteins, osteocalcin and osteopontin, and their matrix ultrastructural localization with development of chondrocyte hypertrophy in vitro.
    Lian JB; McKee MD; Todd AM; Gerstenfeld LC
    J Cell Biochem; 1993 Jun; 52(2):206-19. PubMed ID: 8366137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chondrogenic differentiation in chick embryo osteoblast cultures.
    Manduca P; Descalzi Cancedda F; Cancedda R
    Eur J Cell Biol; 1992 Apr; 57(2):193-201. PubMed ID: 1511696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remodelling of collagen types I, II and X and calcification of human fetal cartilage.
    Kirsch T; von der Mark K
    Bone Miner; 1992 Aug; 18(2):107-17. PubMed ID: 1525593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thyroid hormone, insulin, and glucocorticoids are sufficient to support chondrocyte differentiation to hypertrophy: a serum-free analysis.
    Quarto R; Campanile G; Cancedda R; Dozin B
    J Cell Biol; 1992 Nov; 119(4):989-95. PubMed ID: 1429844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunocytochemical expression of type I and type II collagens by rat Meckel's chondrocytes in culture during phenotypic transformation.
    Ishizeki K; Kubo M; Yamamoto H; Nawa T
    Arch Oral Biol; 1998 Feb; 43(2):117-26. PubMed ID: 9602290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.