These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 1728587)

  • 1. Constitutive myc expression impairs hypertrophy and calcification in cartilage.
    Quarto R; Dozin B; Tacchetti C; Robino G; Zenke M; Campanile G; Cancedda R
    Dev Biol; 1992 Jan; 149(1):168-76. PubMed ID: 1728587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Type X collagen synthesis during in vitro development of chick embryo tibial chondrocytes.
    Castagnola P; Moro G; Descalzi-Cancedda F; Cancedda R
    J Cell Biol; 1986 Jun; 102(6):2310-7. PubMed ID: 3711147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ascorbate modulation of chondrocyte gene expression is independent of its role in collagen secretion.
    Sullivan TA; Uschmann B; Hough R; Leboy PS
    J Biol Chem; 1994 Sep; 269(36):22500-6. PubMed ID: 8077198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progression and recapitulation of the chondrocyte differentiation program: cartilage matrix protein is a marker for cartilage maturation.
    Chen Q; Johnson DM; Haudenschild DR; Goetinck PF
    Dev Biol; 1995 Nov; 172(1):293-306. PubMed ID: 7589809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypertrophy is not a prerequisite for type X collagen expression or mineralization of chondrocytes derived from cultured chick mandibular ectomesenchyme.
    Ekanayake S; Hall BK
    Int J Dev Biol; 1994 Dec; 38(4):683-94. PubMed ID: 7779689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypertrophic chondrocytes undergo further differentiation in culture.
    Descalzi Cancedda F; Gentili C; Manduca P; Cancedda R
    J Cell Biol; 1992 Apr; 117(2):427-35. PubMed ID: 1560033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of calcium deficiency on chondrocyte hypertrophy and type X collagen expression in chick embryonic sternum.
    Reginato AM; Tuan RS; Ono T; Jimenez SA; Jacenko O
    Dev Dyn; 1993 Dec; 198(4):284-95. PubMed ID: 8130376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene expression and extracellular matrix ultrastructure of a mineralizing chondrocyte cell culture system.
    Gerstenfeld LC; Landis WJ
    J Cell Biol; 1991 Feb; 112(3):501-13. PubMed ID: 1991793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression and role of c-myc in chondrocytes undergoing endochondral ossification.
    Iwamoto M; Yagami K; Lu Valle P; Olsen BR; Petropoulos CJ; Ewert DL; Pacifici M
    J Biol Chem; 1993 May; 268(13):9645-52. PubMed ID: 8486652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An established rat cell line expressing chondrocyte properties.
    Horton WE; Cleveland J; Rapp U; Nemuth G; Bolander M; Doege K; Yamada Y; Hassell JR
    Exp Cell Res; 1988 Oct; 178(2):457-68. PubMed ID: 3049123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of type II and type XI collagen synthesis by an immortalized rat chondrocyte cell line (IRC) having a low level of type II collagen mRNA expression.
    Oxford JT; Doege KJ; Horton WE; Morris NP
    Exp Cell Res; 1994 Jul; 213(1):28-36. PubMed ID: 8020600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulated production of mineralization-competent matrix vesicles in hypertrophic chondrocytes.
    Kirsch T; Nah HD; Shapiro IM; Pacifici M
    J Cell Biol; 1997 Jun; 137(5):1149-60. PubMed ID: 9166414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in the expression of annexin A5 gene during in vitro chondrocyte differentiation: influence of cell attachment.
    Turnay J; Olmo N; Lizarbe MA; von der Mark K
    J Cell Biochem; 2001; 84(1):132-42. PubMed ID: 11746522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parathyroid hormone [PTH(1-34)] and parathyroid hormone-related protein [PTHrP(1-34)] promote reversion of hypertrophic chondrocytes to a prehypertrophic proliferating phenotype and prevent terminal differentiation of osteoblast-like cells.
    Zerega B; Cermelli S; Bianco P; Cancedda R; Cancedda FD
    J Bone Miner Res; 1999 Aug; 14(8):1281-9. PubMed ID: 10457260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ascorbic acid induces alkaline phosphatase, type X collagen, and calcium deposition in cultured chick chondrocytes.
    Leboy PS; Vaias L; Uschmann B; Golub E; Adams SL; Pacifici M
    J Biol Chem; 1989 Oct; 264(29):17281-6. PubMed ID: 2793855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of bone-related proteins, osteocalcin and osteopontin, and their matrix ultrastructural localization with development of chondrocyte hypertrophy in vitro.
    Lian JB; McKee MD; Todd AM; Gerstenfeld LC
    J Cell Biochem; 1993 Jun; 52(2):206-19. PubMed ID: 8366137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chondrogenic differentiation in chick embryo osteoblast cultures.
    Manduca P; Descalzi Cancedda F; Cancedda R
    Eur J Cell Biol; 1992 Apr; 57(2):193-201. PubMed ID: 1511696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remodelling of collagen types I, II and X and calcification of human fetal cartilage.
    Kirsch T; von der Mark K
    Bone Miner; 1992 Aug; 18(2):107-17. PubMed ID: 1525593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thyroid hormone, insulin, and glucocorticoids are sufficient to support chondrocyte differentiation to hypertrophy: a serum-free analysis.
    Quarto R; Campanile G; Cancedda R; Dozin B
    J Cell Biol; 1992 Nov; 119(4):989-95. PubMed ID: 1429844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunocytochemical expression of type I and type II collagens by rat Meckel's chondrocytes in culture during phenotypic transformation.
    Ishizeki K; Kubo M; Yamamoto H; Nawa T
    Arch Oral Biol; 1998 Feb; 43(2):117-26. PubMed ID: 9602290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.