These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 17286169)

  • 41. Spatial distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in soils from typical oil-sewage irrigation area, Northeast China.
    Li X; Li P; Lin X; Gong Z; Fan S; Zheng L; Verkhozina EA
    Environ Monit Assess; 2008 Aug; 143(1-3):257-65. PubMed ID: 17885816
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrokinetic remediation and microbial community shift of β-cyclodextrin-dissolved petroleum hydrocarbon-contaminated soil.
    Wan C; Du M; Lee DJ; Yang X; Ma W; Zheng L
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):2019-25. PubMed ID: 21052991
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cosolvency effect in subsurface systems contaminated with petroleum hydrocarbons and ethanol.
    Corseuil HX; Kaipper BI; Fernandes M
    Water Res; 2004 Mar; 38(6):1449-56. PubMed ID: 15016521
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Composition and structure of agents responsible for development of water repellency in soils following oil contamination.
    Litvina M; Todoruk TR; Langford CH
    Environ Sci Technol; 2003 Jul; 37(13):2883-8. PubMed ID: 12875390
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp. (ERI-CPDA-1) isolated from oil contaminated soil.
    Balachandran C; Duraipandiyan V; Balakrishna K; Ignacimuthu S
    Bioresour Technol; 2012 May; 112():83-90. PubMed ID: 22425516
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Polycyclic aromatic hydrocarbons (PAHs) in soils from a multi-industrial city, South Korea.
    Kwon HO; Choi SD
    Sci Total Environ; 2014 Feb; 470-471():1494-501. PubMed ID: 24011990
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An evaluation of residues at an oil refinery site following fires.
    Skrbić B; Miljević N
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002; 37(6):1029-39. PubMed ID: 12090277
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Composition, distribution, and characterization of polycyclic aromatic hydrocarbons in soil in Linfen, China.
    Fu S; Cheng HX; Liu YH; Xia XJ; Xu XB
    Bull Environ Contam Toxicol; 2009 Feb; 82(2):167-71. PubMed ID: 18773129
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sediment quality benchmarks for assessing oil-related impacts to the deep-sea benthos.
    Balthis WL; Hyland JL; Cooksey C; Montagna PA; Baguley JG; Ricker RW; Lewis C
    Integr Environ Assess Manag; 2017 Sep; 13(5):840-851. PubMed ID: 28121064
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of soil depth on phytoremediation efficiency for petroleum contaminants.
    Keller J; Banks MK; Schwab AP
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jan; 43(1):1-9. PubMed ID: 18161552
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Isiokpo oil-pipeline leakage: total organic carbon/organic matter contents of affected soils.
    Osuji LC; Adesiyan SO
    Chem Biodivers; 2005 Aug; 2(8):1079-85. PubMed ID: 17193191
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Environmental and socioeconomic impacts of pipeline transport interdiction in Niger Delta, Nigeria.
    Umar HA; Abdul Khanan MF; Ogbonnaya C; Shiru MS; Ahmad A; Baba AI
    Heliyon; 2021 May; 7(5):e06999. PubMed ID: 34027190
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Weighing the evidence of ecological risk from PAHs contamination in the estuarine environment of Salina Cruz Bay, México.
    Salazar-Coria L; Schifter I; González-Macías C
    Environ Monit Assess; 2010 Mar; 162(1-4):387-406. PubMed ID: 19266302
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison between simulated SO
    Aguilar CMZ; Valdes-Manzanilla A; Margulis RB; Meraz EDA
    Environ Monit Assess; 2020 Apr; 192(5):310. PubMed ID: 32328813
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Study of the oil geopermeation patterns: A case study of ANSYS CFX software application for computer modeling.
    Ablieieva I; Plyatsuk L; Roi I; Chekh O; Gabbassova S; Zaitseva K; Lutsenko S
    J Environ Manage; 2021 Jun; 287():112347. PubMed ID: 33743415
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effects of pipeline construction disturbance on soil properties and restoration cycle.
    Shi P; Xiao J; Wang YF; Chen LD
    Environ Monit Assess; 2014 Mar; 186(3):1825-35. PubMed ID: 24141486
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Environmental risk of oil pipeline accidents.
    Lu H; Xi D; Qin G
    Sci Total Environ; 2023 May; 874():162386. PubMed ID: 36863588
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Statistical analysis of environmental consequences of hazardous liquid pipeline accidents.
    Belvederesi C; Thompson MS; Komers PE
    Heliyon; 2018 Nov; 4(11):e00901. PubMed ID: 30450435
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Low-field NMR relaxometry: a study of interactions of water with water-repellant soils.
    Todoruk TR; Litvina M; Kantzas A; Langford CH
    Environ Sci Technol; 2003 Jul; 37(13):2878-82. PubMed ID: 12875389
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Study on the Operation Safety and Reliability of a Waxy Hot Oil Pipeline with Low Throughput Using the Probabilistic Method.
    Yu P; Lei Y; Gao Y; Peng H; Deng S; Liu Y; Lv X; Zhao H
    ACS Omega; 2020 Dec; 5(51):33340-33346. PubMed ID: 33403296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.