These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 17286375)

  • 21. Isosteric replacement of sulfur with other chalcogens in peptides and proteins.
    Moroder L
    J Pept Sci; 2005 Apr; 11(4):187-214. PubMed ID: 15782428
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combination of Thiol-Additive-Free Native Chemical Ligation/Desulfurization and Intentional Replacement of Alanine with Cysteine.
    Tsuda S; Mochizuki M; Nishio H; Yoshiya T
    Chembiochem; 2016 Nov; 17(22):2133-2136. PubMed ID: 27616000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cysteine-derived s-protected oxazolidinones: potential chemical devices for the preparation of peptide thioesters.
    Ohta Y; Itoh S; Shigenaga A; Shintaku S; Fujii N; Otaka A
    Org Lett; 2006 Feb; 8(3):467-70. PubMed ID: 16435861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluorescein as a versatile tag for enhanced selectivity in analyzing cysteine-containing proteins/peptides using mass spectrometry.
    Chen SH; Hsu JL; Lin FS
    Anal Chem; 2008 Jul; 80(13):5251-9. PubMed ID: 18512949
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional ubiquitin conjugates with lysine-epsilon-amino-specific linkage by thioether ligation of cysteinyl-ubiquitin peptide building blocks.
    Jung JE; Wollscheid HP; Marquardt A; Manea M; Scheffner M; Przybylski M
    Bioconjug Chem; 2009 Jun; 20(6):1152-62. PubMed ID: 19469549
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acceleration of thiol additive-free native chemical ligation by intramolecular S → S acyl transfer.
    Schmalisch J; Seitz O
    Chem Commun (Camb); 2015 May; 51(35):7554-7. PubMed ID: 25846105
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical ligation of S-scylated cysteine peptides to form native peptides via 5-, 11-, and 14-membered cyclic transition states.
    Katritzky AR; Tala SR; Abo-Dya NE; Ibrahim TS; El-Feky SA; Gyanda K; Pandya KM
    J Org Chem; 2011 Jan; 76(1):85-96. PubMed ID: 21158395
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Type of Auxiliary for Native Chemical Peptide Ligation beyond Cysteine and Glycine Junctions.
    Loibl SF; Harpaz Z; Seitz O
    Angew Chem Int Ed Engl; 2015 Dec; 54(50):15055-9. PubMed ID: 26545341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of the stability of technetium-labeled peptides to challenge with cysteine.
    Stalteri MA; Bansal S; Hider R; Mather SJ
    Bioconjug Chem; 1999; 10(1):130-6. PubMed ID: 9893974
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toward the total chemical synthesis of the cancer protein NY-ESO-1.
    Harris PW; Brimble MA
    Biopolymers; 2010; 94(4):542-50. PubMed ID: 20593475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. '100 years of peptide synthesis': ligation methods for peptide and protein synthesis with applications to beta-peptide assemblies.
    Kimmerlin T; Seebach D
    J Pept Res; 2005 Feb; 65(2):229-60. PubMed ID: 15705167
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Facile synthesis of membrane-embedded peptides utilizing lipid bilayer-assisted chemical ligation.
    Otaka A; Ueda S; Tomita K; Yano Y; Tamamura H; Matsuzaki K; Fujii N
    Chem Commun (Camb); 2004 Aug; (15):1722-3. PubMed ID: 15278155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of reactive cysteines in a protein using arsenic labeling and collision-induced dissociation tandem mass spectrometry.
    Lu M; Wang H; Wang Z; Li XF; Le XC
    J Proteome Res; 2008 Aug; 7(8):3080-90. PubMed ID: 18613716
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study of chemical ligation via 17-, 18- and 19-membered cyclic transition states.
    Panda SS; El-Nachef C; Bajaj K; Al-Youbi AO; Oliferenko A; Katritzky AR
    Chem Biol Drug Des; 2012 Dec; 80(6):821-7. PubMed ID: 22974460
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of alternating L-/D-amino acid chiralities and disulfide bond geometry on the capacity of cysteine-containing reversible cyclic peptides to disperse carbon nanotubes.
    Becraft EJ; Klimenko AS; Dieckmann GR
    Biopolymers; 2009; 92(3):212-21. PubMed ID: 19283829
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation and use of cysteine orthoesters for solid-supported synthesis of peptides.
    Huang Z; Derksen DJ; Vederas JC
    Org Lett; 2010 May; 12(10):2282-5. PubMed ID: 20405951
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of full length PB1-F2 influenza A virus proteins from 'Spanish flu' and 'bird flu'.
    Röder R; Bruns K; Sharma A; Eissmann A; Hahn F; Studtrucker N; Fossen T; Wray V; Henklein P; Schubert U
    J Pept Sci; 2008 Aug; 14(8):954-62. PubMed ID: 18381743
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of cyclic peptides containing a thioester handle for native chemical ligation.
    van de Langemheen H; Brouwer AJ; Kemmink J; Kruijtzer JA; Liskamp RM
    J Org Chem; 2012 Nov; 77(22):10058-64. PubMed ID: 23078179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent trends in Cys- and Ser/Thr-based synthetic strategies for the elaboration of peptide constructs.
    Monbaliu JC; Katritzky AR
    Chem Commun (Camb); 2012 Dec; 48(95):11601-22. PubMed ID: 23072786
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modular total chemical synthesis of a human immunodeficiency virus type 1 protease.
    Johnson EC; Malito E; Shen Y; Rich D; Tang WJ; Kent SB
    J Am Chem Soc; 2007 Sep; 129(37):11480-90. PubMed ID: 17705484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.