BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 17286408)

  • 1. Exploiting nucleotidylyltransferases to prepare sugar nucleotides.
    Timmons SC; Mosher RH; Knowles SA; Jakeman DL
    Org Lett; 2007 Mar; 9(5):857-60. PubMed ID: 17286408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipophilic sugar nucleotide synthesis by structure-based design of nucleotidylyltransferase substrates.
    Huestis MP; Aish GA; Hui JP; Soo EC; Jakeman DL
    Org Biomol Chem; 2008 Feb; 6(3):477-84. PubMed ID: 18219417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme-catalyzed synthesis of furanosyl nucleotides.
    Timmons SC; Hui JP; Pearson JL; Peltier P; Daniellou R; Nugier-Chauvin C; Soo EC; Syvitski RT; Ferrières V; Jakeman DL
    Org Lett; 2008 Jan; 10(2):161-3. PubMed ID: 18092787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A chemoenzymatic route to synthesize unnatural sugar nucleotides using a novel N-acetylglucosamine-1-phosphate pyrophosphorylase from Camphylobacter jejuni NCTC 11168.
    Fang J; Xue M; Gu G; Liu XW; Wang PG
    Bioorg Med Chem Lett; 2013 Aug; 23(15):4303-7. PubMed ID: 23800684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. General assay for sugar nucleotidyltransferases using electrospray ionization mass spectrometry.
    Zea CJ; Pohl NL
    Anal Biochem; 2004 May; 328(2):196-202. PubMed ID: 15113697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereospecific synthesis of sugar-1-phosphates and their conversion to sugar nucleotides.
    Timmons SC; Jakeman DL
    Carbohydr Res; 2008 Apr; 343(5):865-74. PubMed ID: 18299123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in the enzymatic synthesis of sugar-nucleotides using nucleotidylyltransferases and glycosyltransferases.
    Ahmadipour S; Beswick L; Miller GJ
    Carbohydr Res; 2018 Nov; 469():38-47. PubMed ID: 30265902
    [No Abstract]   [Full Text] [Related]  

  • 8. One-step synthesis of labeled sugar nucleotides for protein O-GlcNAc modification studies by chemical function analysis of an archaeal protein.
    Mizanur RM; Jaipuri FA; Pohl NL
    J Am Chem Soc; 2005 Jan; 127(3):836-7. PubMed ID: 15656612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme-catalyzed synthesis of isosteric phosphono-analogues of sugar nucleotides.
    Beaton SA; Huestis MP; Sadeghi-Khomami A; Thomas NR; Jakeman DL
    Chem Commun (Camb); 2009 Jan; (2):238-40. PubMed ID: 19099081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies for the chemoenzymatic synthesis of deoxysugar nucleotides: substrate binding versus catalysis.
    Ko KS; Zea CJ; Pohl NL
    J Org Chem; 2005 Mar; 70(5):1919-21. PubMed ID: 15730323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering ribonucleoside triphosphate specificity in a thymidylyltransferase.
    Jakeman DL; Young JL; Huestis MP; Peltier P; Daniellou R; Nugier-Chauvin C; Ferrières V
    Biochemistry; 2008 Aug; 47(33):8719-25. PubMed ID: 18656961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of sugar nucleotides by application of phosphoramidites.
    Gold H; van Delft P; Meeuwenoord N; Codée JD; Filippov DV; Eggink G; Overkleeft HS; van der Marel GA
    J Org Chem; 2008 Dec; 73(23):9458-60. PubMed ID: 18991380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleoside phosphate analogues of biological interest, and their synthesis via aryl nucleoside H-phosphonates as intermediates.
    Cieślak J; Sobkowski M; Jankowska J; Wenska M; Szymczak M; Imiolczyk B; Zagórowska I; Shugar D; Stawiński J; Kraszewski A
    Acta Biochim Pol; 2001; 48(2):429-42. PubMed ID: 11732613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double sugar and phosphate backbone-constrained nucleotides: synthesis, structure, stability, and their incorporation into oligodeoxynucleotides.
    Zhou C; Plashkevych O; Chattopadhyaya J
    J Org Chem; 2009 May; 74(9):3248-65. PubMed ID: 19348480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphomannose isomerase/GDP-mannose pyrophosphorylase from Pyrococcus furiosus: a thermostable biocatalyst for the synthesis of guanidinediphosphate-activated and mannose-containing sugar nucleotides.
    Mizanur RM; Pohl NL
    Org Biomol Chem; 2009 May; 7(10):2135-9. PubMed ID: 19421452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Base-promoted rearrangement of sugar epoxides to unsaturated sugars.
    Wang Y; Li Q; Cheng S; Wu Y; Guo D; Fan QH; Wang X; Zhang LH; Ye XS
    Org Lett; 2005 Dec; 7(25):5577-9. PubMed ID: 16320995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate specificity of the macrolide-glycosylating enzyme pair DesVII/DesVIII: opportunities, limitations, and mechanistic hypotheses.
    Borisova SA; Zhang C; Takahashi H; Zhang H; Wong AW; Thorson JS; Liu HW
    Angew Chem Int Ed Engl; 2006 Apr; 45(17):2748-53. PubMed ID: 16538696
    [No Abstract]   [Full Text] [Related]  

  • 18. Thiophosphate and thiophosphonate analogues of glucose-1-phosphate: synthesis and enzymatic activity with a thymidylyltransferase.
    Loranger MW; Beaton SA; Lines KL; Jakeman DL
    Carbohydr Res; 2013 Sep; 379():43-50. PubMed ID: 23872276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short and efficient synthesis of chiral furyl carbinols from carbohydrates.
    Boto A; Hernandez D; Hernandez R
    Org Lett; 2007 Apr; 9(9):1721-4. PubMed ID: 17397175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbohydrates as synthetic tools in organic chemistry.
    Boysen MM
    Chemistry; 2007; 13(31):8648-59. PubMed ID: 17712826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.