BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 17286428)

  • 1. New insights into the reaction mechanism catalyzed by the glutamate racemase enzyme: pH titration curves and classical molecular dynamics simulations.
    Puig E; Garcia-Viloca M; Gonzalez-Lafont A; Lluch JM; Field MJ
    J Phys Chem B; 2007 Mar; 111(9):2385-97. PubMed ID: 17286428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple substrate binding states and chiral recognition in cofactor-independent glutamate racemase: a molecular dynamics study.
    Möbitz H; Bruice TC
    Biochemistry; 2004 Aug; 43(30):9685-94. PubMed ID: 15274623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the ionization state of the substrate in the active site of glutamate racemase. A QM/MM study about the importance of being zwitterionic.
    Puig E; Garcia-Viloca M; González-Lafont A; Lluch JM
    J Phys Chem A; 2006 Jan; 110(2):717-25. PubMed ID: 16405345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical analysis of the catalytic mechanism of Helicobacter pylori glutamate racemase.
    Mixcoha E; Garcia-Viloca M; Lluch JM; González-Lafont A
    J Phys Chem B; 2012 Oct; 116(41):12406-14. PubMed ID: 22984984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and mechanism of glutamate racemase from Aquifex pyrophilus.
    Hwang KY; Cho CS; Kim SS; Sung HC; Yu YG; Cho Y
    Nat Struct Biol; 1999 May; 6(5):422-6. PubMed ID: 10331867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of conserved basic amino acid residues and activation mechanism of the hyperthermophilic aspartate racemase at high temperature.
    Yoshida T; Seko T; Okada O; Iwata K; Liu L; Miki K; Yohda M
    Proteins; 2006 Aug; 64(2):502-12. PubMed ID: 16705641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The novel structure of a pyridoxal 5'-phosphate-dependent fold-type I racemase, alpha-amino-epsilon-caprolactam racemase from Achromobacter obae.
    Okazaki S; Suzuki A; Mizushima T; Kawano T; Komeda H; Asano Y; Yamane T
    Biochemistry; 2009 Feb; 48(5):941-50. PubMed ID: 19146406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalyzing racemizations in the absence of a cofactor: the reaction mechanism in proline racemase.
    Rubinstein A; Major DT
    J Am Chem Soc; 2009 Jun; 131(24):8513-21. PubMed ID: 19492806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. D-amino acids in the brain: structure and function of pyridoxal phosphate-dependent amino acid racemases.
    Yoshimura T; Goto M
    FEBS J; 2008 Jul; 275(14):3527-37. PubMed ID: 18564179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic acid/base residues of glutamate racemase.
    Glavas S; Tanner ME
    Biochemistry; 1999 Mar; 38(13):4106-13. PubMed ID: 10194325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure, mechanism, and conformational dynamics of O-acetylserine sulfhydrylase from Salmonella typhimurium: comparison of A and B isozymes.
    Chattopadhyay A; Meier M; Ivaninskii S; Burkhard P; Speroni F; Campanini B; Bettati S; Mozzarelli A; Rabeh WM; Li L; Cook PF
    Biochemistry; 2007 Jul; 46(28):8315-30. PubMed ID: 17583914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics studies of alanine racemase: a structural model for drug design.
    Mustata GI; Soares TA; Briggs JM
    Biopolymers; 2003 Oct; 70(2):186-200. PubMed ID: 14517907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combined quantum mechanical and molecular mechanical study of the reaction mechanism and alpha-amino acidity in alanine racemase.
    Major DT; Gao J
    J Am Chem Soc; 2006 Dec; 128(50):16345-57. PubMed ID: 17165790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition state stabilization and alpha-amino carbon acidity in alanine racemase.
    Major DT; Nam K; Gao J
    J Am Chem Soc; 2006 Jun; 128(25):8114-5. PubMed ID: 16787057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction mechanism of glutamate racemase, a pyridoxal phosphate-independent amino acid racemase.
    Choi SY; Esaki N; Yoshimura T; Soda K
    J Biochem; 1992 Jul; 112(1):139-42. PubMed ID: 1358877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical criteria for the identification of protein active sites using Theoretical Microscopic Titration Curves.
    Ko J; Murga LF; André P; Yang H; Ondrechen MJ; Williams RJ; Agunwamba A; Budil DE
    Proteins; 2005 May; 59(2):183-95. PubMed ID: 15739204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How the substrate D-glutamate drives the catalytic action of Bacillus subtilis glutamate racemase.
    Puig E; Mixcoha E; Garcia-Viloca M; González-Lafont A; Lluch JM
    J Am Chem Soc; 2009 Mar; 131(10):3509-21. PubMed ID: 19227983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of aspartic acid in collagen structure and stability: A molecular dynamics investigation.
    Raman SS; Parthasarathi R; Subramanian V; Ramasami T
    J Phys Chem B; 2006 Oct; 110(41):20678-85. PubMed ID: 17034259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chemistry of protein catalysis.
    Holliday GL; Almonacid DE; Mitchell JB; Thornton JM
    J Mol Biol; 2007 Oct; 372(5):1261-77. PubMed ID: 17727879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural insights into stereochemical inversion by diaminopimelate epimerase: an antibacterial drug target.
    Pillai B; Cherney MM; Diaper CM; Sutherland A; Blanchard JS; Vederas JC; James MN
    Proc Natl Acad Sci U S A; 2006 Jun; 103(23):8668-73. PubMed ID: 16723397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.