These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 17286482)

  • 1. Recovering the Crooks equation for dynamical systems in the isothermal-isobaric ensemble: a strategy based on the equations of motion.
    Chelli R; Marsili S; Barducci A; Procacci P
    J Chem Phys; 2007 Jan; 126(4):044502. PubMed ID: 17286482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crooks equation for steered molecular dynamics using a Nosé-Hoover thermostat.
    Procacci P; Marsili S; Barducci A; Signorini GF; Chelli R
    J Chem Phys; 2006 Oct; 125(16):164101. PubMed ID: 17092057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A proof of Jarzynski's nonequilibrium work theorem for dynamical systems that conserve the canonical distribution.
    Schöll-Paschinger E; Dellago C
    J Chem Phys; 2006 Aug; 125(5):054105. PubMed ID: 16942201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalization of the Jarzynski and Crooks nonequilibrium work theorems in molecular dynamics simulations.
    Chelli R; Marsili S; Barducci A; Procacci P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):050101. PubMed ID: 17677005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Configurational constant pressure molecular dynamics.
    Braga C; Travis KP
    J Chem Phys; 2006 Mar; 124(10):104102. PubMed ID: 16542063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical verification of the generalized Crooks nonequilibrium work theorem for non-Hamiltonian molecular dynamics simulations.
    Chelli R; Marsili S; Barducci A; Procacci P
    J Chem Phys; 2007 Jul; 127(3):034110. PubMed ID: 17655434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Jarzynski identity derived from general Hamiltonian or non-Hamiltonian dynamics reproducing NVT or NPT ensembles.
    Cuendet MA
    J Chem Phys; 2006 Oct; 125(14):144109. PubMed ID: 17042581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics in the isothermal-isobaric ensemble: the requirement of a "shell" molecule. II. Simulation results.
    Uline MJ; Corti DS
    J Chem Phys; 2005 Oct; 123(16):164102. PubMed ID: 16268676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics in the isothermal-isobaric ensemble: the requirement of a "shell" molecule. III. Discontinuous potentials.
    Uline MJ; Corti DS
    J Chem Phys; 2008 Jul; 129(1):014107. PubMed ID: 18624470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics in the isothermal-isobaric ensemble: the requirement of a "shell" molecule. I. Theory and phase-space analysis.
    Uline MJ; Corti DS
    J Chem Phys; 2005 Oct; 123(16):164101. PubMed ID: 16268675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular simulation of dendrimers and their mixtures under shear: comparison of isothermal-isobaric (NpT) and isothermal-isochoric (NVT) ensemble systems.
    Bosko JT; Todd BD; Sadus RJ
    J Chem Phys; 2005 Jul; 123(3):34905. PubMed ID: 16080761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rigid-body dynamics in the isothermal-isobaric ensemble: a test on the accuracy and computational efficiency.
    Shinoda W; Mikami M
    J Comput Chem; 2003 Jun; 24(8):920-30. PubMed ID: 12720312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonequilibrium work relations for systems subject to mechanical and thermal changes.
    Chelli R
    J Chem Phys; 2009 Feb; 130(5):054102. PubMed ID: 19206953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comment regarding "On the Crooks fluctuation theorem and the Jarzynski equality" [J. Chem. Phys. 129, 091101 (2008)] and "Nonequilibrium fluctuation-dissipation theorem of Brownian dynamics" [J. Chem. Phys. 129, 144113 (2008)].
    Crooks GE
    J Chem Phys; 2009 Mar; 130(10):107101; discussion 107102. PubMed ID: 19292558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A proper approach for nonequilibrium molecular dynamics simulations of planar elongational flow.
    Baig C; Edwards BJ; Keffer DJ; Cochran HD
    J Chem Phys; 2005 Mar; 122(11):114103. PubMed ID: 15836197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Langevin dynamics in constant pressure extended systems.
    Quigley D; Probert MI
    J Chem Phys; 2004 Jun; 120(24):11432-41. PubMed ID: 15268177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A differential fluctuation theorem.
    Maragakis P; Spichty M; Karplus M
    J Phys Chem B; 2008 May; 112(19):6168-74. PubMed ID: 18331019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time reversible molecular dynamics algorithms with holonomic bond constraints in the NPH and NPT ensembles using molecular scaling.
    Ingebrigtsen T; Heilmann OJ; Toxvaerd S; Dyre JC
    J Chem Phys; 2010 Apr; 132(15):154106. PubMed ID: 20423167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure derivatives in the classical molecular-dynamics ensemble.
    Meier K; Kabelac S
    J Chem Phys; 2006 Feb; 124(6):64104. PubMed ID: 16483193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of free-energy differences from computed work distributions: an application of Jarzynski's equality.
    Echeverria I; Amzel LM
    J Phys Chem B; 2012 Sep; 116(36):10986-95. PubMed ID: 22849340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.