BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 17286573)

  • 21. Anaerobiosis inhibits gas vesicle formation in halophilic Archaea.
    Hechler T; Pfeifer F
    Mol Microbiol; 2009 Jan; 71(1):132-45. PubMed ID: 19007418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Haloferax volcanii, a prokaryotic species that does not use the Shine Dalgarno mechanism for translation initiation at 5'-UTRs.
    Kramer P; Gäbel K; Pfeiffer F; Soppa J
    PLoS One; 2014; 9(4):e94979. PubMed ID: 24733188
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An alternative pathway for reduced folate biosynthesis in bacteria and halophilic archaea.
    Levin I; Giladi M; Altman-Price N; Ortenberg R; Mevarech M
    Mol Microbiol; 2004 Dec; 54(5):1307-18. PubMed ID: 15554970
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of the twin-arginine motif of a haloarchaeal Tat substrate.
    Kwan D; Bolhuis A
    FEMS Microbiol Lett; 2010 Jul; 308(2):138-43. PubMed ID: 20487024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of residues essential for the catalytic activity of Sec11b, one of the two type I signal peptidases of Haloferax volcanii.
    Fink-Lavi E; Eichler J
    FEMS Microbiol Lett; 2008 Jan; 278(2):257-60. PubMed ID: 18067576
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AglF, aglG and aglI, novel members of a gene island involved in the N-glycosylation of the Haloferax volcanii S-layer glycoprotein.
    Yurist-Doutsch S; Abu-Qarn M; Battaglia F; Morris HR; Hitchen PG; Dell A; Eichler J
    Mol Microbiol; 2008 Sep; 69(5):1234-45. PubMed ID: 18631242
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolution of translational initiation: new insights from the archaea.
    Londei P
    FEMS Microbiol Rev; 2005 Apr; 29(2):185-200. PubMed ID: 15808741
    [TBL] [Abstract][Full Text] [Related]  

  • 28. AglP is a S-adenosyl-L-methionine-dependent methyltransferase that participates in the N-glycosylation pathway of Haloferax volcanii.
    Magidovich H; Yurist-Doutsch S; Konrad Z; Ventura VV; Dell A; Hitchen PG; Eichler J
    Mol Microbiol; 2010 Apr; 76(1):190-9. PubMed ID: 20149102
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Escherichia coli mRNAs with strong Shine/Dalgarno sequences also contain 5' end sequences complementary to domain # 17 on the 16S ribosomal RNA.
    Golshani A; Krogan NJ; Xu J; Pacal M; Yang XC; Ivanov I; Providenti MA; Ganoza MC; Ivanov IG; AbouHaidar MG
    Biochem Biophys Res Commun; 2004 Apr; 316(4):978-83. PubMed ID: 15044080
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deletion of the Sm1 encoding motif in the lsm gene results in distinct changes in the transcriptome and enhanced swarming activity of Haloferax cells.
    Maier LK; Benz J; Fischer S; Alstetter M; Jaschinski K; Hilker R; Becker A; Allers T; Soppa J; Marchfelder A
    Biochimie; 2015 Oct; 117():129-37. PubMed ID: 25754521
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Towards glycoengineering in archaea: replacement of Haloferax volcanii AglD with homologous glycosyltransferases from other halophilic archaea.
    Calo D; Eilam Y; Lichtenstein RG; Eichler J
    Appl Environ Microbiol; 2010 Sep; 76(17):5684-92. PubMed ID: 20601508
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrophobic carboxy-terminal residues dramatically reduce protein levels in the haloarchaeon Haloferax volcanii.
    Reuter CJ; Uthandi S; Puentes JA; Maupin-Furlow JA
    Microbiology (Reading); 2010 Jan; 156(Pt 1):248-255. PubMed ID: 19850616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The oxidative pentose phosphate pathway in the haloarchaeon Haloferax volcanii involves a novel type of glucose-6-phosphate dehydrogenase--The archaeal Zwischenferment.
    Pickl A; Schönheit P
    FEBS Lett; 2015 Apr; 589(10):1105-11. PubMed ID: 25836736
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptional Landscape and Regulatory Roles of Small Noncoding RNAs in the Oxidative Stress Response of the Haloarchaeon Haloferax volcanii.
    Gelsinger DR; DiRuggiero J
    J Bacteriol; 2018 May; 200(9):. PubMed ID: 29463600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Divergent transcriptional and translational signals in Archaea.
    Torarinsson E; Klenk HP; Garrett RA
    Environ Microbiol; 2005 Jan; 7(1):47-54. PubMed ID: 15643935
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tantalizing evidence for caspase-like protein expression and activity in the cellular stress response of Archaea.
    Bidle KA; Haramaty L; Baggett N; Nannen J; Bidle KD
    Environ Microbiol; 2010 May; 12(5):1161-72. PubMed ID: 20132282
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reconstitution of the signal recognition particle of the halophilic archaeon Haloferax volcanii.
    Tozik I; Huang Q; Zwieb C; Eichler J
    Nucleic Acids Res; 2002 Oct; 30(19):4166-75. PubMed ID: 12364595
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane binding of SRP pathway components in the halophilic archaea Haloferax volcanii.
    Lichi T; Ring G; Eichler J
    Eur J Biochem; 2004 Apr; 271(7):1382-90. PubMed ID: 15030489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ribosome profiling in archaea reveals leaderless translation, novel translational initiation sites, and ribosome pausing at single codon resolution.
    Gelsinger DR; Dallon E; Reddy R; Mohammad F; Buskirk AR; DiRuggiero J
    Nucleic Acids Res; 2020 Jun; 48(10):5201-5216. PubMed ID: 32382758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolution and the universality of the mechanism of initiation of protein synthesis.
    Nakamoto T
    Gene; 2009 Mar; 432(1-2):1-6. PubMed ID: 19056476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.