These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 17286601)

  • 1. Early molecular effects of ethanol during vertebrate embryogenesis.
    Yelin R; Kot H; Yelin D; Fainsod A
    Differentiation; 2007 Jun; 75(5):393-403. PubMed ID: 17286601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol exposure affects gene expression in the embryonic organizer and reduces retinoic acid levels.
    Yelin R; Schyr RB; Kot H; Zins S; Frumkin A; Pillemer G; Fainsod A
    Dev Biol; 2005 Mar; 279(1):193-204. PubMed ID: 15708568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethanol impairs migration of the prechordal plate in the zebrafish embryo.
    Blader P; Strähle U
    Dev Biol; 1998 Sep; 201(2):185-201. PubMed ID: 9740658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Spemann organizer of Xenopus is patterned along its anteroposterior axis at the earliest gastrula stage.
    Zoltewicz JS; Gerhart JC
    Dev Biol; 1997 Dec; 192(2):482-91. PubMed ID: 9441683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A concentration gradient of retinoids in the early Xenopus laevis embryo.
    Chen Y; Huang L; Solursh M
    Dev Biol; 1994 Jan; 161(1):70-6. PubMed ID: 7904969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Spemann's organizer--it's origin and derivatives (cellular-tissue and molecular-genetic aspects)].
    Gorodilov IuN
    Tsitologiia; 2001; 43(2):182-203. PubMed ID: 11347475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential regulation of chordin expression domains in mutant zebrafish.
    Miller-Bertoglio VE; Fisher S; Sánchez A; Mullins MC; Halpern ME
    Dev Biol; 1997 Dec; 192(2):537-50. PubMed ID: 9441687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ethanol induces embryonic malformations by competing for retinaldehyde dehydrogenase activity during vertebrate gastrulation.
    Kot-Leibovich H; Fainsod A
    Dis Model Mech; 2009; 2(5-6):295-305. PubMed ID: 19380308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ADHFe1: a novel enzyme involved in retinoic acid-dependent Hox activation.
    Shabtai Y; Shukrun N; Fainsod A
    Int J Dev Biol; 2017; 61(3-4-5):303-310. PubMed ID: 28621427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential developmental changes in holoprosencephalic mouse embryos exposed to ethanol during the gastrulation period.
    Higashiyama D; Saitsu H; Komada M; Takigawa T; Ishibashi M; Shiota K
    Birth Defects Res A Clin Mol Teratol; 2007 Jul; 79(7):513-23. PubMed ID: 17393481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering the role of Shh signaling in axial defects produced by ethanol exposure.
    Loucks EJ; Ahlgren SC
    Birth Defects Res A Clin Mol Teratol; 2009 Jun; 85(6):556-67. PubMed ID: 19235835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishment of mesodermal gene expression patterns in early Xenopus embryos: the role of repression.
    Kurth T; Meissner S; Schäckel S; Steinbeisser H
    Dev Dyn; 2005 Jun; 233(2):418-29. PubMed ID: 15779047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cdc42 Effector Protein 2 (XCEP2) is required for normal gastrulation and contributes to cellular adhesion in Xenopus laevis.
    Nelson KK; Nelson RW
    BMC Dev Biol; 2004 Oct; 4():13. PubMed ID: 15473906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory interactions during embryogenesis in Xenopus laevis.
    Dawid IB; Otani H; Curtiss P; Taira M
    C R Acad Sci III; 1993 Sep; 316(9):945-58. PubMed ID: 7915634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Spemann-Mangold organizer: the control of fate specification and morphogenetic rearrangements during gastrulation in Xenopus.
    Bouwmeester T
    Int J Dev Biol; 2001; 45(1):251-8. PubMed ID: 11291854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary origins of blastoporal expression and organizer activity of the vertebrate gastrula organizer gene lhx1 and its ancient metazoan paralog lhx3.
    Yasuoka Y; Kobayashi M; Kurokawa D; Akasaka K; Saiga H; Taira M
    Development; 2009 Jun; 136(12):2005-14. PubMed ID: 19439497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The FGFR pathway is required for the trunk-inducing functions of Spemann's organizer.
    Mitchell TS; Sheets MD
    Dev Biol; 2001 Sep; 237(2):295-305. PubMed ID: 11543615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinol dehydrogenase 10 is a feedback regulator of retinoic acid signalling during axis formation and patterning of the central nervous system.
    Strate I; Min TH; Iliev D; Pera EM
    Development; 2009 Feb; 136(3):461-72. PubMed ID: 19141675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FoxO genes are dispensable during gastrulation but required for late embryogenesis in Xenopus laevis.
    Schuff M; Siegel D; Bardine N; Oswald F; Donow C; Knöchel W
    Dev Biol; 2010 Jan; 337(2):259-73. PubMed ID: 19895805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental analysis of activin-like kinase receptor-4 (ALK4) expression in Xenopus laevis.
    Chen Y; Whitaker LL; Ramsdell AF
    Dev Dyn; 2005 Feb; 232(2):393-8. PubMed ID: 15614766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.