BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 17286872)

  • 1. Hon-yaku: a biology-driven Bayesian methodology for identifying translation initiation sites in prokaryotes.
    Makita Y; de Hoon MJ; Danchin A
    BMC Bioinformatics; 2007 Feb; 8():47. PubMed ID: 17286872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy improvement for identifying translation initiation sites in microbial genomes.
    Zhu HQ; Hu GQ; Ouyang ZQ; Wang J; She ZS
    Bioinformatics; 2004 Dec; 20(18):3308-17. PubMed ID: 15247104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying translation initiation sites in prokaryotes using support vector machine.
    Gao T; Yang Z; Wang Y; Jing L
    J Theor Biol; 2010 Feb; 262(4):644-9. PubMed ID: 19840808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions.
    Besemer J; Lomsadze A; Borodovsky M
    Nucleic Acids Res; 2001 Jun; 29(12):2607-18. PubMed ID: 11410670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MetWAMer: eukaryotic translation initiation site prediction.
    Sparks ME; Brendel V
    BMC Bioinformatics; 2008 Sep; 9():381. PubMed ID: 18801175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MED: a new non-supervised gene prediction algorithm for bacterial and archaeal genomes.
    Zhu H; Hu GQ; Yang YF; Wang J; She ZS
    BMC Bioinformatics; 2007 Mar; 8():97. PubMed ID: 17367537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational evaluation of TIS annotation for prokaryotic genomes.
    Hu GQ; Zheng X; Ju LN; Zhu H; She ZS
    BMC Bioinformatics; 2008 Mar; 9():160. PubMed ID: 18366730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An unsupervised classification scheme for improving predictions of prokaryotic TIS.
    Tech M; Meinicke P
    BMC Bioinformatics; 2006 Mar; 7():121. PubMed ID: 16526950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene prediction in metagenomic fragments: a large scale machine learning approach.
    Hoff KJ; Tech M; Lingner T; Daniel R; Morgenstern B; Meinicke P
    BMC Bioinformatics; 2008 Apr; 9():217. PubMed ID: 18442389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved prediction of bacterial transcription start sites.
    Gordon JJ; Towsey MW; Hogan JM; Mathews SA; Timms P
    Bioinformatics; 2006 Jan; 22(2):142-8. PubMed ID: 16287942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A symbolic-numeric approach to find patterns in genomes. Application to the translation initiation sites of E. coli.
    Delamarche C; Guerdoux-Jamet P; Gras R; Nicolas J
    Biochimie; 1999 Nov; 81(11):1065-72. PubMed ID: 10575363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translation initiation site prediction on a genomic scale: beauty in simplicity.
    Saeys Y; Abeel T; Degroeve S; Van de Peer Y
    Bioinformatics; 2007 Jul; 23(13):i418-23. PubMed ID: 17646326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TITER: predicting translation initiation sites by deep learning.
    Zhang S; Hu H; Jiang T; Zhang L; Zeng J
    Bioinformatics; 2017 Jul; 33(14):i234-i242. PubMed ID: 28881981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico analysis of 5'-UTRs highlights the prevalence of Shine-Dalgarno and leaderless-dependent mechanisms of translation initiation in bacteria and archaea, respectively.
    Srivastava A; Gogoi P; Deka B; Goswami S; Kanaujia SP
    J Theor Biol; 2016 Aug; 402():54-61. PubMed ID: 27155047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial start site prediction.
    Hannenhalli SS; Hayes WS; Hatzigeorgiou AG; Fickett JW
    Nucleic Acids Res; 1999 Sep; 27(17):3577-82. PubMed ID: 10446249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SIGffRid: a tool to search for sigma factor binding sites in bacterial genomes using comparative approach and biologically driven statistics.
    Touzain F; Schbath S; Debled-Rennesson I; Aigle B; Kucherov G; Leblond P
    BMC Bioinformatics; 2008 Jan; 9():73. PubMed ID: 18237374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translation initiation start prediction in human cDNAs with high accuracy.
    Hatzigeorgiou AG
    Bioinformatics; 2002 Feb; 18(2):343-50. PubMed ID: 11847092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recognition of translation initiation sites of eukaryotic genes based on an EM algorithm.
    Wang Y; Ou H; Guo F
    J Comput Biol; 2003; 10(5):699-708. PubMed ID: 14633394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anatomy of Escherichia coli ribosome binding sites.
    Shultzaberger RK; Bucheimer RE; Rudd KE; Schneider TD
    J Mol Biol; 2001 Oct; 313(1):215-28. PubMed ID: 11601857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing scaleup yield for protein production: Computationally Optimized DNA Assembly (CODA) and Translation Engineering.
    Hatfield GW; Roth DA
    Biotechnol Annu Rev; 2007; 13():27-42. PubMed ID: 17875472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.