These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 17287112)

  • 41. Responses of Crop Water Use Efficiency to Climate Change and Agronomic Measures in the Semiarid Area of Northern China.
    Zhang J; Ren W; An P; Pan Z; Wang L; Dong Z; He D; Yang J; Pan S; Tian H
    PLoS One; 2015; 10(9):e0137409. PubMed ID: 26336098
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced drought tolerance in transgenic Leymus chinensis plants with constitutively expressed wheat TaLEA3.
    Wang L; Li X; Chen S; Liu G
    Biotechnol Lett; 2009 Feb; 31(2):313-9. PubMed ID: 18936880
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Use of plant residues for improving soil fertility, pod nutrients, root growth and pod weight of okra (Abelmoschus esculentum L).
    Moyin-Jesu EI
    Bioresour Technol; 2007 Aug; 98(11):2057-64. PubMed ID: 17336057
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photosynthetic pathway influences xylem structure and function in Flaveria (Asteraceae).
    Kocacinar F; McKown AD; Sage TL; Sage RF
    Plant Cell Environ; 2008 Oct; 31(10):1363-76. PubMed ID: 18643957
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Emerging trends in the functional genomics of the abiotic stress response in crop plants.
    Vij S; Tyagi AK
    Plant Biotechnol J; 2007 May; 5(3):361-80. PubMed ID: 17430544
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil.
    Delhaize E; Taylor P; Hocking PJ; Simpson RJ; Ryan PR; Richardson AE
    Plant Biotechnol J; 2009 Jun; 7(5):391-400. PubMed ID: 19490502
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Epigenetic chromatin modifiers in barley: I. Cloning, mapping and expression analysis of the plant specific HD2 family of histone deacetylases from barley, during seed development and after hormonal treatment.
    Demetriou K; Kapazoglou A; Tondelli A; Francia E; Stanca MA; Bladenopoulos K; Tsaftaris AS
    Physiol Plant; 2009 Jul; 136(3):358-68. PubMed ID: 19470089
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Allometric analysis reveals relatively little variation in nitrogen versus biomass accrual in four plant species exposed to varying light, nutrients, water and CO2.
    Bernacchi CJ; Thompson JN; Coleman JS; McConnaughay KD
    Plant Cell Environ; 2007 Oct; 30(10):1216-22. PubMed ID: 17727413
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Water-deficit stress-induced anatomical changes in higher plants.
    Shao HB; Chu LY; Jaleel CA; Zhao CX
    C R Biol; 2008 Mar; 331(3):215-25. PubMed ID: 18280987
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed.
    Nesi N; Delourme R; Brégeon M; Falentin C; Renard M
    C R Biol; 2008 Oct; 331(10):763-71. PubMed ID: 18926490
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Membrane transporters for nitrogen, phosphate and potassium uptake in plants.
    Chen YF; Wang Y; Wu WH
    J Integr Plant Biol; 2008 Jul; 50(7):835-48. PubMed ID: 18713394
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana.
    Zhao L; Liu F; Xu W; Di C; Zhou S; Xue Y; Yu J; Su Z
    Plant Biotechnol J; 2009 Aug; 7(6):550-61. PubMed ID: 19508276
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identifying food proteins with allergenic potential: evolution of approaches to safety assessment and research to provide additional tools.
    Ladics GS; Selgrade MK
    Regul Toxicol Pharmacol; 2009 Aug; 54(3 Suppl):S2-6. PubMed ID: 19028539
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The potential of genetically enhanced plants to address food insecurity.
    Christou P; Twyman RM
    Nutr Res Rev; 2004 Jun; 17(1):23-42. PubMed ID: 19079913
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetic approaches for improvement of the crop potassium acquisition and utilization efficiency.
    Wang Y; Wu WH
    Curr Opin Plant Biol; 2015 Jun; 25():46-52. PubMed ID: 25941764
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intragenic crop improvement: combining the benefits of traditional breeding and genetic engineering.
    Rommens CM
    J Agric Food Chem; 2007 May; 55(11):4281-8. PubMed ID: 17488120
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice.
    Chen JQ; Meng XP; Zhang Y; Xia M; Wang XP
    Biotechnol Lett; 2008 Dec; 30(12):2191-8. PubMed ID: 18779926
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of the aquaporin PIP1 subfamily in the chilling tolerance of rice.
    Matsumoto T; Lian HL; Su WA; Tanaka D; Liu Cw; Iwasaki I; Kitagawa Y
    Plant Cell Physiol; 2009 Feb; 50(2):216-29. PubMed ID: 19098326
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Leaf senescence and nutrient remobilisation in barley and wheat.
    Gregersen PL; Holm PB; Krupinska K
    Plant Biol (Stuttg); 2008 Sep; 10 Suppl 1():37-49. PubMed ID: 18721310
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics.
    Abhilash PC; Jamil S; Singh N
    Biotechnol Adv; 2009; 27(4):474-88. PubMed ID: 19371778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.