These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 17287436)

  • 1. Limits of linear rate coding of dynamic stimuli by electroreceptor afferents.
    Gussin D; Benda J; Maler L
    J Neurophysiol; 2007 Apr; 97(4):2917-29. PubMed ID: 17287436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coding of stimuli by ampullary afferents in Gnathonemus petersii.
    Engelmann J; Gertz S; Goulet J; Schuh A; von der Emde G
    J Neurophysiol; 2010 Oct; 104(4):1955-68. PubMed ID: 20685928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noise-induced transition to bursting in responses of paddlefish electroreceptor afferents.
    Neiman AB; Yakusheva TA; Russell DF
    J Neurophysiol; 2007 Nov; 98(5):2795-806. PubMed ID: 17855580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From stimulus encoding to feature extraction in weakly electric fish.
    Gabbiani F; Metzner W; Wessel R; Koch C
    Nature; 1996 Dec; 384(6609):564-7. PubMed ID: 8955269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural dynamics of envelope coding.
    Longtin A; Middleton JW; Cieniak J; Maler L
    Math Biosci; 2008; 214(1-2):87-99. PubMed ID: 18514744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pings the body electric (and means it too). Focus on "interval coding. I. Burst interspike intervals as indicators of stimulus intensity" and "interval coding. II. Dendrite-dependent mechanisms".
    Dimitrov AG
    J Neurophysiol; 2007 Apr; 97(4):2577-8. PubMed ID: 17251374
    [No Abstract]   [Full Text] [Related]  

  • 7. Interval coding. II. Dendrite-dependent mechanisms.
    Doiron B; Oswald AM; Maler L
    J Neurophysiol; 2007 Apr; 97(4):2744-57. PubMed ID: 17409177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Receptive field organization across multiple electrosensory maps. II. Computational analysis of the effects of receptive field size on prey localization.
    Maler L
    J Comp Neurol; 2009 Oct; 516(5):394-422. PubMed ID: 19655388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coding of information in models of tuberous electroreceptors.
    St-Hilaire M; Longtin A
    Math Biosci; 2004; 188():157-74. PubMed ID: 14766100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonspiking and spiking proprioceptors in the crab: nonlinear analysis of nonspiking TCMRO afferents.
    DiCaprio RA
    J Neurophysiol; 2003 Apr; 89(4):1826-36. PubMed ID: 12611947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coding of time-varying electric field amplitude modulations in a wave-type electric fish.
    Wessel R; Koch C; Gabbiani F
    J Neurophysiol; 1996 Jun; 75(6):2280-93. PubMed ID: 8793741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Receptive field organization across multiple electrosensory maps. I. Columnar organization and estimation of receptive field size.
    Maler L
    J Comp Neurol; 2009 Oct; 516(5):376-93. PubMed ID: 19655387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal burst coding for extracting features of spatiotemporally varying stimuli.
    Fujita K; Kashimori Y; Kambara T
    Biol Cybern; 2007 Oct; 97(4):293-305. PubMed ID: 17805559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robustness and variability of neuronal coding by amplitude-sensitive afferents in the weakly electric fish eigenmannia.
    Kreiman G; Krahe R; Metzner W; Koch C; Gabbiani F
    J Neurophysiol; 2000 Jul; 84(1):189-204. PubMed ID: 10899196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A role of burst firings in encoding of spatiotemporally-varying stimulus.
    Fujita K; Kashimori Y; Zheng M; Kambara T
    Biosystems; 2004; 76(1-3):21-31. PubMed ID: 15351127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural strategies for optimal processing of sensory signals.
    Maler L
    Prog Brain Res; 2007; 165():135-54. PubMed ID: 17925244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic frequency tuning in ELL pyramidal cells varies across electrosensory maps.
    Mehaffey WH; Maler L; Turner RW
    J Neurophysiol; 2008 May; 99(5):2641-55. PubMed ID: 18367702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interval coding. I. Burst interspike intervals as indicators of stimulus intensity.
    Oswald AM; Doiron B; Maler L
    J Neurophysiol; 2007 Apr; 97(4):2731-43. PubMed ID: 17409176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human auditory steady-state responses during sweeps of intensity.
    Picton TW; van Roon P; John MS
    Ear Hear; 2007 Aug; 28(4):542-57. PubMed ID: 17609615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of burst dynamics improves differential encoding of stimulus frequency by spike train segregation.
    Mehaffey WH; Fernandez FR; Maler L; Turner RW
    J Neurophysiol; 2007 Aug; 98(2):939-51. PubMed ID: 17581845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.