BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 17287885)

  • 1. Transgenic cotton over-producing spinach sucrose phosphate synthase showed enhanced leaf sucrose synthesis and improved fiber quality under controlled environmental conditions.
    Haigler CH; Singh B; Zhang D; Hwang S; Wu C; Cai WX; Hozain M; Kang W; Kiedaisch B; Strauss RE; Hequet EF; Wyatt BG; Jividen GM; Holaday AS
    Plant Mol Biol; 2007 Apr; 63(6):815-32. PubMed ID: 17287885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-directed mutagenesis of serine 158 demonstrates its role in spinach leaf sucrose-phosphate synthase modulation.
    Toroser D; McMichael R; Krause KP; Kurreck J; Sonnewald U; Stitt M; Huber SC
    Plant J; 1999 Feb; 17(4):407-13. PubMed ID: 10205897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elevated sucrose-phosphate synthase activity in transgenic tobacco sustains photosynthesis in older leaves and alters development.
    Baxter CJ; Foyer CH; Turner J; Rolfe SA; Quick WP
    J Exp Bot; 2003 Aug; 54(389):1813-20. PubMed ID: 12815030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decrease in leaf sucrose synthesis leads to increased leaf starch turnover and decreased RuBP regeneration-limited photosynthesis but not Rubisco-limited photosynthesis in Arabidopsis null mutants of SPSA1.
    Sun J; Zhang J; Larue CT; Huber SC
    Plant Cell Environ; 2011 Apr; 34(4):592-604. PubMed ID: 21309792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constitutive expression of mustard annexin, AnnBj1 enhances abiotic stress tolerance and fiber quality in cotton under stress.
    Divya K; Jami SK; Kirti PB
    Plant Mol Biol; 2010 Jun; 73(3):293-308. PubMed ID: 20148350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development.
    Ding M; Jiang Y; Cao Y; Lin L; He S; Zhou W; Rong J
    Gene; 2014 Feb; 535(2):273-85. PubMed ID: 24279997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sucrose phosphate synthase activity rises in correlation with high-rate cellulose synthesis in three heterotrophic systems.
    Babb VM; Haigler CH
    Plant Physiol; 2001 Nov; 127(3):1234-42. PubMed ID: 11706202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of fruiting positions on cellulose synthesis and sucrose metabolism during cotton (Gossypium hirsutum L.) fiber development.
    Ma Y; Wang Y; Liu J; Lv F; Chen J; Zhou Z
    PLoS One; 2014; 9(2):e89476. PubMed ID: 24586807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential expression of sucrose-phosphate synthase isoenzymes in tobacco reflects their functional specialization during dark-governed starch mobilization in source leaves.
    Chen S; Hajirezaei M; Börnke F
    Plant Physiol; 2005 Nov; 139(3):1163-74. PubMed ID: 16244140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality.
    Jiang Y; Guo W; Zhu H; Ruan YL; Zhang T
    Plant Biotechnol J; 2012 Apr; 10(3):301-12. PubMed ID: 22044435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbohydrate metabolism in the subtending leaf cross-acclimates to waterlogging and elevated temperature stress and influences boll biomass in cotton (Gossypium hirsutum).
    Wang H; Chen Y; Hu W; Wang S; Snider JL; Zhou Z
    Physiol Plant; 2017 Nov; 161(3):339-354. PubMed ID: 28581029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of a potato sucrose synthase gene in cotton accelerates leaf expansion, reduces seed abortion, and enhances fiber production.
    Xu SM; Brill E; Llewellyn DJ; Furbank RT; Ruan YL
    Mol Plant; 2012 Mar; 5(2):430-41. PubMed ID: 22115917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decreased expression of two key enzymes in the sucrose biosynthesis pathway, cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase, has remarkably different consequences for photosynthetic carbon metabolism in transgenic Arabidopsis thaliana.
    Strand A; Zrenner R; Trevanion S; Stitt M; Gustafsson P; Gardeström P
    Plant J; 2000 Sep; 23(6):759-70. PubMed ID: 10998187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Waterlogging during flowering and boll forming stages affects sucrose metabolism in the leaves subtending the cotton boll and its relationship with boll weight.
    Kuai J; Liu Z; Wang Y; Meng Y; Chen B; Zhao W; Zhou Z; Oosterhuis DM
    Plant Sci; 2014 Jun; 223():79-98. PubMed ID: 24767118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct nodule and leaf functions of two different sucrose phosphate synthases in alfalfa.
    Padhi S; Grimes MM; Muro-Villanueva F; Ortega JL; Sengupta-Gopalan C
    Planta; 2019 Nov; 250(5):1743-1755. PubMed ID: 31422508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of the two major leaf isoforms of sucrose-phosphate synthase in Arabidopsis thaliana limits sucrose synthesis and nocturnal starch degradation but does not alter carbon partitioning during photosynthesis.
    Volkert K; Debast S; Voll LM; Voll H; Schießl I; Hofmann J; Schneider S; Börnke F
    J Exp Bot; 2014 Oct; 65(18):5217-29. PubMed ID: 24994761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Over-expression of an arabidopsis family A sucrose phosphate synthase (SPS) gene alters plant growth and fibre development.
    Park JY; Canam T; Kang KY; Ellis DD; Mansfield SD
    Transgenic Res; 2008 Apr; 17(2):181-92. PubMed ID: 17415671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Soil Salinity on Sucrose Metabolism in Cotton Leaves.
    Peng J; Liu J; Zhang L; Luo J; Dong H; Ma Y; Zhao X; Chen B; Sui N; Zhou Z; Meng Y
    PLoS One; 2016; 11(5):e0156241. PubMed ID: 27228029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Soil Salinity on Sucrose Metabolism in Cotton Fiber.
    Peng J; Zhang L; Liu J; Luo J; Zhao X; Dong H; Ma Y; Sui N; Zhou Z; Meng Y
    PLoS One; 2016; 11(5):e0156398. PubMed ID: 27227773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nodule-enhanced expression of a sucrose phosphate synthase gene member (MsSPSA) has a role in carbon and nitrogen metabolism in the nodules of alfalfa (Medicago sativa L.).
    Aleman L; Ortega JL; Martinez-Grimes M; Seger M; Holguin FO; Uribe DJ; Garcia-Ibilcieta D; Sengupta-Gopalan C
    Planta; 2010 Jan; 231(2):233-44. PubMed ID: 19898977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.