BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 17288387)

  • 1. Microwave-assisted asymmetric organocatalysis. A probe for nonthermal microwave effects and the concept of simultaneous cooling.
    Hosseini M; Stiasni N; Barbieri V; Kappe CO
    J Org Chem; 2007 Feb; 72(4):1417-24. PubMed ID: 17288387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry.
    Herrero MA; Kremsner JM; Kappe CO
    J Org Chem; 2008 Jan; 73(1):36-47. PubMed ID: 18062704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An investigation of wall effects in microwave-assisted ring-closing metathesis and cyclotrimerization reactions.
    Dallinger D; Irfan M; Suljanovic A; Kappe CO
    J Org Chem; 2010 Aug; 75(15):5278-88. PubMed ID: 20670032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic resolution of rac-1-phenylethanol with immobilized lipases: a critical comparison of microwave and conventional heating protocols.
    de Souza RO; Antunes OA; Kroutil W; Kappe CO
    J Org Chem; 2009 Aug; 74(16):6157-62. PubMed ID: 19601570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the existence of nonthermal/specific microwave effects using silicon carbide heating elements as power modulators.
    Razzaq T; Kremsner JM; Kappe CO
    J Org Chem; 2008 Aug; 73(16):6321-9. PubMed ID: 18613726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave-assisted cross-coupling and hydrogenation chemistry by using heterogeneous transition-metal catalysts: an evaluation of the role of selective catalyst heating.
    Irfan M; Fuchs M; Glasnov TN; Kappe CO
    Chemistry; 2009 Nov; 15(43):11608-18. PubMed ID: 19774573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An evaluation of microwave-assisted derivatization procedures using hyphenated mass spectrometric techniques.
    Damm M; Rechberger G; Kollroser M; Kappe CO
    J Chromatogr A; 2009 Jul; 1216(31):5875-81. PubMed ID: 19555958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature distributions within zeolite precursor solutions in the presence of microwaves.
    Gharibeh M; Tompsett G; Lu F; Auerbach SM; Yngvesson KS; Conner WC
    J Phys Chem B; 2009 Sep; 113(37):12506-20. PubMed ID: 19469480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical verification of nonthermal microwave effects on intramolecular reactions.
    Kanno M; Nakamura K; Kanai E; Hoki K; Kono H; Tanaka M
    J Phys Chem A; 2012 Mar; 116(9):2177-83. PubMed ID: 22332996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology.
    Kappe CO
    Acc Chem Res; 2013 Jul; 46(7):1579-87. PubMed ID: 23463987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the formation of CuInS2 nanoparticles by the oleylamine route: comparison of microwave-assisted and conventional syntheses.
    Pein A; Baghbanzadeh M; Rath T; Haas W; Maier E; Amenitsch H; Hofer F; Kappe CO; Trimmel G
    Inorg Chem; 2011 Jan; 50(1):193-200. PubMed ID: 21141832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave-enhanced reaction rates for nanoparticle synthesis.
    Gerbec JA; Magana D; Washington A; Strouse GF
    J Am Chem Soc; 2005 Nov; 127(45):15791-800. PubMed ID: 16277522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-phase synthesis of difficult peptide sequences at elevated temperatures: a critical comparison of microwave and conventional heating technologies.
    Bacsa B; Horváti K; Bõsze S; Andreae F; Kappe CO
    J Org Chem; 2008 Oct; 73(19):7532-42. PubMed ID: 18729524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and antigenic preservation of plant samples by microwave-enhanced fixation, using dedicated hardware, minimizing heat-related effects.
    Lería F; Marco R; Medina FJ
    Microsc Res Tech; 2004 Sep; 65(1-2):86-100. PubMed ID: 15570593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.
    Gawande MB; Shelke SN; Zboril R; Varma RS
    Acc Chem Res; 2014 Apr; 47(4):1338-48. PubMed ID: 24666323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissecting competitive mechanisms: thionation vs. cycloaddition in the reaction of thioisomunchnones with isothiocyanates under microwave irradiation.
    Cantillo D; Avalos M; Babiano R; Cintas P; Jiménez JL; Light ME; Palacios JC
    J Org Chem; 2009 Oct; 74(20):7644-50. PubMed ID: 19775139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sintered silicon carbide: a new ceramic vessel material for microwave chemistry in single-mode reactors.
    Gutmann B; Obermayer D; Reichart B; Prekodravac B; Irfan M; Kremsner JM; Kappe CO
    Chemistry; 2010 Oct; 16(40):12182-94. PubMed ID: 20845418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the energy efficiency of microwave-assisted organic reactions.
    Razzaq T; Kappe CO
    ChemSusChem; 2008; 1(1-2):123-32. PubMed ID: 18605675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromagnetic simulations of microwave heating experiments using reaction vessels made out of silicon carbide.
    Robinson J; Kingman S; Irvine D; Licence P; Smith A; Dimitrakis G; Obermayer D; Kappe CO
    Phys Chem Chem Phys; 2010 Sep; 12(36):10793-800. PubMed ID: 20625593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A critical assessment of the specific role of microwave irradiation in the synthesis of ZnO micro- and nanostructured materials.
    Baghbanzadeh M; Skapin SD; Orel ZC; Kappe CO
    Chemistry; 2012 Apr; 18(18):5724-31. PubMed ID: 22454084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.