These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 17288452)
1. Sodium-independent low-affinity D-glucose transport by human sodium/D-glucose cotransporter 1: critical role of tryptophan 561. Kumar A; Tyagi NK; Goyal P; Pandey D; Siess W; Kinne RK Biochemistry; 2007 Mar; 46(10):2758-66. PubMed ID: 17288452 [TBL] [Abstract][Full Text] [Related]
2. D-Glucose-recognition and phlorizin-binding sites in human sodium/D-glucose cotransporter 1 (hSGLT1): a tryptophan scanning study. Tyagi NK; Kumar A; Goyal P; Pandey D; Siess W; Kinne RK Biochemistry; 2007 Nov; 46(47):13616-28. PubMed ID: 17983207 [TBL] [Abstract][Full Text] [Related]
3. High-yield functional expression of human sodium/d-glucose cotransporter1 in Pichia pastoris and characterization of ligand-induced conformational changes as studied by tryptophan fluorescence. Tyagi NK; Goyal P; Kumar A; Pandey D; Siess W; Kinne RK Biochemistry; 2005 Nov; 44(47):15514-24. PubMed ID: 16300400 [TBL] [Abstract][Full Text] [Related]
4. Ligand-mediated conformational changes and positioning of tryptophans in reconstituted human sodium/D-glucose cotransporter1 (hSGLT1) probed by tryptophan fluorescence. Kumar A; Tyagi NK; Kinne RK Biophys Chem; 2007 Apr; 127(1-2):69-77. PubMed ID: 17222499 [TBL] [Abstract][Full Text] [Related]
5. C-terminus loop 13 of Na+ glucose cotransporter SGLT1 contains a binding site for alkyl glucosides. Raja MM; Kipp H; Kinne RK Biochemistry; 2004 Aug; 43(34):10944-51. PubMed ID: 15323554 [TBL] [Abstract][Full Text] [Related]
6. A ligand-dependent conformational change of the Na+/galactose cotransporter of Vibrio parahaemolyticus, monitored by tryptophan fluorescence. Veenstra M; Turk E; Wright EM J Membr Biol; 2002 Feb; 185(3):249-55. PubMed ID: 11891582 [TBL] [Abstract][Full Text] [Related]
7. Local conformational changes in the Vibrio Na+/galactose cotransporter. Veenstra M; Lanza S; Hirayama BA; Turk E; Wright EM Biochemistry; 2004 Mar; 43(12):3620-7. PubMed ID: 15035632 [TBL] [Abstract][Full Text] [Related]
8. Protein kinase-A affects sorting and conformation of the sodium-dependent glucose co-transporter SGLT1. Subramanian S; Glitz P; Kipp H; Kinne RK; Castaneda F J Cell Biochem; 2009 Feb; 106(3):444-52. PubMed ID: 19115253 [TBL] [Abstract][Full Text] [Related]
9. Functional asymmetry of the human Na+/glucose transporter (hSGLT1) in bacterial membrane vesicles. Quick M; Tomasevic J; Wright EM Biochemistry; 2003 Aug; 42(30):9147-52. PubMed ID: 12885248 [TBL] [Abstract][Full Text] [Related]
10. Interaction of C-terminal loop 13 of sodium-glucose cotransporter SGLT1 with lipid bilayers. Raja MM; Kinne RK Biochemistry; 2005 Jun; 44(25):9123-9. PubMed ID: 15966736 [TBL] [Abstract][Full Text] [Related]
11. Binding of phlorizin to the isolated C-terminal extramembranous loop of the Na+/glucose cotransporter assessed by intrinsic tryptophan fluorescence. Xia X; Lin JT; Kinne RK Biochemistry; 2003 May; 42(20):6115-20. PubMed ID: 12755613 [TBL] [Abstract][Full Text] [Related]
12. Substrate specificity of sugar transport by rabbit SGLT1: single-molecule atomic force microscopy versus transport studies. Puntheeranurak T; Wimmer B; Castaneda F; Gruber HJ; Hinterdorfer P; Kinne RK Biochemistry; 2007 Mar; 46(10):2797-804. PubMed ID: 17302432 [TBL] [Abstract][Full Text] [Related]
13. Inhibitor binding in the human renal low- and high-affinity Na+/glucose cotransporters. Pajor AM; Randolph KM; Kerner SA; Smith CD J Pharmacol Exp Ther; 2008 Mar; 324(3):985-91. PubMed ID: 18063724 [TBL] [Abstract][Full Text] [Related]
14. Ligands on the string: single-molecule AFM studies on the interaction of antibodies and substrates with the Na+-glucose co-transporter SGLT1 in living cells. Puntheeranurak T; Wildling L; Gruber HJ; Kinne RK; Hinterdorfer P J Cell Sci; 2006 Jul; 119(Pt 14):2960-7. PubMed ID: 16787940 [TBL] [Abstract][Full Text] [Related]
15. Sodium-dependent reorganization of the sugar-binding site of SGLT1. Hirayama BA; Loo DD; Díez-Sampedro A; Leung DW; Meinild AK; Lai-Bing M; Turk E; Wright EM Biochemistry; 2007 Nov; 46(46):13391-406. PubMed ID: 17960916 [TBL] [Abstract][Full Text] [Related]
16. Conformational dynamics of hSGLT1 during Na+/glucose cotransport. Loo DD; Hirayama BA; Karakossian MH; Meinild AK; Wright EM J Gen Physiol; 2006 Dec; 128(6):701-20. PubMed ID: 17130520 [TBL] [Abstract][Full Text] [Related]
17. Neutralization of conservative charged transmembrane residues in the Na+/glucose cotransporter SGLT1. Panayotova-Heiermann M; Loo DD; Lam JT; Wright EM Biochemistry; 1998 Jul; 37(29):10522-8. PubMed ID: 9671524 [TBL] [Abstract][Full Text] [Related]
18. Structural selectivity of human SGLT inhibitors. Hummel CS; Lu C; Liu J; Ghezzi C; Hirayama BA; Loo DD; Kepe V; Barrio JR; Wright EM Am J Physiol Cell Physiol; 2012 Jan; 302(2):C373-82. PubMed ID: 21940664 [TBL] [Abstract][Full Text] [Related]
19. Functional characterisation of human SGLT-5 as a novel kidney-specific sodium-dependent sugar transporter. Grempler R; Augustin R; Froehner S; Hildebrandt T; Simon E; Mark M; Eickelmann P FEBS Lett; 2012 Feb; 586(3):248-53. PubMed ID: 22212718 [TBL] [Abstract][Full Text] [Related]
20. Development of a novel non-radioactive cell-based method for the screening of SGLT1 and SGLT2 inhibitors using 1-NBDG. Chang HC; Yang SF; Huang CC; Lin TS; Liang PH; Lin CJ; Hsu LC Mol Biosyst; 2013 Aug; 9(8):2010-20. PubMed ID: 23657801 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]